These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 35764281)

  • 61. Tailoring ZSM-5 Zeolites for the Fast Pyrolysis of Biomass to Aromatic Hydrocarbons.
    Hoff TC; Gardner DW; Thilakaratne R; Wang K; Hansen TW; Brown RC; Tessonnier JP
    ChemSusChem; 2016 Jun; 9(12):1473-82. PubMed ID: 27167613
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A Review on Catalytic Fast Co-Pyrolysis Using Analytical Py-GC/MS.
    Mariyam S; Zuhara S; Parthasarathy P; McKay G
    Molecules; 2023 Mar; 28(5):. PubMed ID: 36903559
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Catalytic Pyrolysis Kinetic Behavior and TG-FTIR-GC-MS Analysis of Metallized Food Packaging Plastics with Different Concentrations of ZSM-5 Zeolite Catalyst.
    Eimontas J; Striūgas N; Abdelnaby MA; Yousef S
    Polymers (Basel); 2021 Feb; 13(5):. PubMed ID: 33652610
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Conversion of plastic waste into fuel oil using zeolite catalysts in a bench-scale pyrolysis reactor.
    Sivagami K; Kumar KV; Tamizhdurai P; Govindarajan D; Kumar M; Nambi I
    RSC Adv; 2022 Mar; 12(13):7612-7620. PubMed ID: 35424760
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Improving the Bio-Oil Quality via Effective Pyrolysis/Deoxygenation of Palm Kernel Cake over a Metal (Cu, Ni, or Fe)-Doped Carbon Catalyst.
    Maneechakr P; Karnjanakom S
    ACS Omega; 2021 Aug; 6(30):20006-20014. PubMed ID: 34368586
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Thermo-catalytic pyrolysis of sewage sludge and techno-economic analysis: The effect of synthetic zeolites and natural sourced catalysts.
    Csutoras B; Miskolczi N
    Bioresour Technol; 2024 May; 400():130676. PubMed ID: 38588783
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Pyrolysis of oil sludge from the offshore petroleum industry: influence of different mesoporous zeolites catalysts to obtain paraffinic products.
    Milato JV; França RJ; Marques MRC
    Environ Technol; 2021 Mar; 42(7):1013-1022. PubMed ID: 31378165
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Pyrolysis of waste expanded polystyrene and reduction of styrene via in-situ multiphase pyrolysis of product oil for the production of fuel range hydrocarbons.
    Verma A; Sharma S; Pramanik H
    Waste Manag; 2021 Feb; 120():330-339. PubMed ID: 33341659
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Biomass Valorization through Catalytic Pyrolysis Using Metal-Impregnated Natural Zeolites: From Waste to Resources.
    Venegas-Vásconez D; Orejuela-Escobar L; Valarezo-Garcés A; Guerrero VH; Tipanluisa-Sarchi L; Alejandro-Martín S
    Polymers (Basel); 2024 Jul; 16(13):. PubMed ID: 39000767
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Co-pyrolysis of corn cob and waste cooking oil in a fixed bed.
    Chen G; Liu C; Ma W; Zhang X; Li Y; Yan B; Zhou W
    Bioresour Technol; 2014 Aug; 166():500-7. PubMed ID: 24951937
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Catalytic ozonation of methylethylketone over porous Mn-Cu/HZSM-5.
    Ha MJ; Lee JE; Park Y; Cha JS; Kim YM; Kim BS
    Environ Res; 2023 Jun; 227():115706. PubMed ID: 36931381
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Conversion of waste cooking oil into biodiesel using heterogenous catalyst derived from cork biochar.
    Bhatia SK; Gurav R; Choi TR; Kim HJ; Yang SY; Song HS; Park JY; Park YL; Han YH; Choi YK; Kim SH; Yoon JJ; Yang YH
    Bioresour Technol; 2020 Apr; 302():122872. PubMed ID: 32014731
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Production of aromatic hydrocarbons through catalytic pyrolysis of 5-Hydroxymethylfurfural from biomass.
    Zhao Y; Pan T; Zuo Y; Guo QX; Fu Y
    Bioresour Technol; 2013 Nov; 147():37-42. PubMed ID: 23994304
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Preparation of Metal-Loaded ZSM-5 Zeolite Catalyst and Its Catalytic Effect on HMF Production from Biomass.
    Hoang PH; Cuong TD
    Appl Biochem Biotechnol; 2022 Nov; 194(11):4985-4998. PubMed ID: 35679014
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A review on advanced catalytic co-pyrolysis of biomass and hydrogen-rich feedstock: Insights into synergistic effect, catalyst development and reaction mechanism.
    Ahmed MHM; Batalha N; Mahmudul HMD; Perkins G; Konarova M
    Bioresour Technol; 2020 Aug; 310():123457. PubMed ID: 32371033
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Production of value-added aromatics from wasted COVID-19 mask via catalytic pyrolysis.
    Lee SB; Lee J; Tsang YF; Kim YM; Jae J; Jung SC; Park YK
    Environ Pollut; 2021 Aug; 283():117060. PubMed ID: 33852997
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils.
    Vispute TP; Zhang H; Sanna A; Xiao R; Huber GW
    Science; 2010 Nov; 330(6008):1222-7. PubMed ID: 21109668
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Preparation of mesoporous ZSM-5 catalysts using green templates and their performance in biomass catalytic pyrolysis.
    Che Q; Yang M; Wang X; Yang Q; Chen Y; Chen X; Chen W; Hu J; Zeng K; Yang H; Chen H
    Bioresour Technol; 2019 Oct; 289():121729. PubMed ID: 31323723
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Catalytic co-pyrolysis of sugarcane bagasse and waste high-density polyethylene over faujasite-type zeolite.
    Hassan H; Lim JK; Hameed BH
    Bioresour Technol; 2019 Jul; 284():406-414. PubMed ID: 30965196
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Pyrolysis and co-pyrolysis of Laminaria japonica and polypropylene over mesoporous Al-SBA-15 catalyst.
    Lee HW; Choi SJ; Park SH; Jeon JK; Jung SC; Kim SC; Park YK
    Nanoscale Res Lett; 2014; 9(1):376. PubMed ID: 25136282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.