These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45. Programmed Death Ligand 1 Indicates Pre-Existing Adaptive Immune Response by Tumor-Infiltrating CD8 Li YM; Yu JM; Liu ZY; Yang HJ; Tang J; Chen ZN Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31627272 [TBL] [Abstract][Full Text] [Related]
46. Local and Targeted Delivery of Immune Checkpoint Blockade Therapeutics. Han X; Li H; Zhou D; Chen Z; Gu Z Acc Chem Res; 2020 Nov; 53(11):2521-2533. PubMed ID: 33073988 [TBL] [Abstract][Full Text] [Related]
47. Adaptive antitumor immune response stimulated by bio-nanoparticle based vaccine and checkpoint blockade. Bai X; Zhou Y; Yokota Y; Matsumoto Y; Zhai B; Maarouf N; Hayashi H; Carlson R; Zhang S; Sousa A; Sun B; Ghanbari H; Dong X; Wands JR J Exp Clin Cancer Res; 2022 Apr; 41(1):132. PubMed ID: 35392977 [TBL] [Abstract][Full Text] [Related]
48. Triple-Combination Immunogenic Nanovesicles Reshape the Tumor Microenvironment to Potentiate Chemo-Immunotherapy in Preclinical Cancer Models. Shi X; Shu L; Wang M; Yao J; Yao Q; Bian S; Chen X; Wan J; Zhang F; Zheng S; Wang H Adv Sci (Weinh); 2023 May; 10(15):e2204890. PubMed ID: 37017572 [TBL] [Abstract][Full Text] [Related]
49. Study and analysis of antitumor resistance mechanism of PD1/PD-L1 immune checkpoint blocker. Wang Z; Wu X Cancer Med; 2020 Nov; 9(21):8086-8121. PubMed ID: 32875727 [TBL] [Abstract][Full Text] [Related]
50. Frequent amplification of HDAC genes and efficacy of HDAC inhibitor chidamide and PD-1 blockade combination in soft tissue sarcoma. Que Y; Zhang XL; Liu ZX; Zhao JJ; Pan QZ; Wen XZ; Xiao W; Xu BS; Hong DC; Guo TH; Shen LJ; Fan WJ; Chen HY; Weng DS; Xu HR; Zhou PH; Zhang YZ; Niu XH; Zhang X J Immunother Cancer; 2021 Feb; 9(2):. PubMed ID: 33637599 [TBL] [Abstract][Full Text] [Related]
51. Nafamostat mesilate, a serine protease inhibitor, suppresses interferon-gamma-induced up-regulation of programmed cell death ligand 1 in human cancer cells. Homma S; Hayashi K; Yoshida K; Sagawa Y; Kamata Y; Ito M Int Immunopharmacol; 2018 Jan; 54():39-45. PubMed ID: 29100036 [TBL] [Abstract][Full Text] [Related]
52. High baseline tumor burden-associated macrophages promote an immunosuppressive microenvironment and reduce the efficacy of immune checkpoint inhibitors through the IGFBP2-STAT3-PD-L1 pathway. Wen Z; Sun H; Zhang Z; Zheng Y; Zheng S; Bin J; Liao Y; Shi M; Zhou R; Liao W Cancer Commun (Lond); 2023 May; 43(5):562-581. PubMed ID: 37031362 [TBL] [Abstract][Full Text] [Related]
53. Near-infrared photoimmunotherapy targeting PD-L1: Improved efficacy by preconditioning the tumor microenvironment. Inagaki FF; Kano M; Furusawa A; Kato T; Okada R; Fukushima H; Takao S; Okuyama S; Choyke PL; Kobayashi H Cancer Sci; 2024 Jul; 115(7):2396-2409. PubMed ID: 38671582 [TBL] [Abstract][Full Text] [Related]
54. A risk score combining co-expression modules related to myeloid cells and alternative splicing associates with response to PD-1/PD-L1 blockade in non-small cell lung cancer. Han Y; Liu SM; Jin R; Meng W; Wu YL; Li H Front Immunol; 2023; 14():1178193. PubMed ID: 37492578 [TBL] [Abstract][Full Text] [Related]
55. CXCL13 shapes immunoactive tumor microenvironment and enhances the efficacy of PD-1 checkpoint blockade in high-grade serous ovarian cancer. Yang M; Lu J; Zhang G; Wang Y; He M; Xu Q; Xu C; Liu H J Immunother Cancer; 2021 Jan; 9(1):. PubMed ID: 33452206 [TBL] [Abstract][Full Text] [Related]
56. Targeting IL-33 reprograms the tumor microenvironment and potentiates antitumor response to anti-PD-L1 immunotherapy. Nan Y; Bai Y; Hu X; Zhou K; Wu T; Zhu A; Li M; Dou Z; Cao Z; Zhang X; Xu S; Zhang Y; Lin J; Zeng X; Fan J; Zhang X; Wang X; Ju D J Immunother Cancer; 2024 Sep; 12(9):. PubMed ID: 39231544 [TBL] [Abstract][Full Text] [Related]
57. Programmed death (PD)-1/PD-ligand 1 blockade mediates antiangiogenic effects by tumor-derived CXCL10/11 as a potential predictive biomarker. Mitsuhashi A; Kondoh K; Horikawa K; Koyama K; Nguyen NT; Afroj T; Yoneda H; Otsuka K; Ogino H; Nokihara H; Shinohara T; Nishioka Y Cancer Sci; 2021 Dec; 112(12):4853-4866. PubMed ID: 34628702 [TBL] [Abstract][Full Text] [Related]
58. Rapamycin circumvents anti PD-1 therapy resistance in colorectal cancer by reducing PD-L1 expression and optimizing the tumor microenvironment. Jia M; Yuan Z; Yu H; Feng S; Tan X; Long Z; Duan Y; Zhu W; Yan P Biomed Pharmacother; 2024 Jul; 176():116883. PubMed ID: 38876047 [TBL] [Abstract][Full Text] [Related]
59. Histone Deacetylase as a Valuable Predictive Biomarker and Therapeutic Target in Immunotherapy for Non-Small Cell Lung Cancer. Shin HS; Choi J; Lee J; Lee SY Cancer Res Treat; 2022 Apr; 54(2):458-468. PubMed ID: 34517693 [TBL] [Abstract][Full Text] [Related]
60. Activation of NF-κB and p300/CBP potentiates cancer chemoimmunotherapy through induction of MHC-I antigen presentation. Zhou Y; Bastian IN; Long MD; Dow M; Li W; Liu T; Ngu RK; Antonucci L; Huang JY; Phung QT; Zhao XH; Banerjee S; Lin XJ; Wang H; Dang B; Choi S; Karin D; Su H; Ellisman MH; Jamieson C; Bosenberg M; Cheng Z; Haybaeck J; Kenner L; Fisch KM; Bourgon R; Hernandez G; Lill JR; Liu S; Carter H; Mellman I; Karin M; Shalapour S Proc Natl Acad Sci U S A; 2021 Feb; 118(8):. PubMed ID: 33602823 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]