These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35764630)

  • 1. Learning representations of chromatin contacts using a recurrent neural network identifies genomic drivers of conformation.
    Dsouza KB; Maslova A; Al-Jibury E; Merkenschlager M; Bhargava VK; Libbrecht MW
    Nat Commun; 2022 Jun; 13(1):3704. PubMed ID: 35764630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A global high-density chromatin interaction network reveals functional long-range and trans-chromosomal relationships.
    Lohia R; Fox N; Gillis J
    Genome Biol; 2022 Nov; 23(1):238. PubMed ID: 36352464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing stationary distributions derived from chromatin contact maps.
    Segal MR; Fletez-Brant K
    BMC Bioinformatics; 2020 Feb; 21(1):73. PubMed ID: 32093610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deep learning method for replicate-based analysis of chromosome conformation contacts using Siamese neural networks.
    Al-Jibury E; King JWD; Guo Y; Lenhard B; Fisher AG; Merkenschlager M; Rueckert D
    Nat Commun; 2023 Aug; 14(1):5007. PubMed ID: 37591842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Latent Representation of the Human Pan-Celltype Epigenome Through a Deep Recurrent Neural Network.
    Dsouza KB; Li AY; Bhargava VK; Libbrecht MW
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2313-2323. PubMed ID: 34043510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFHiC: a dilated full convolution model to enhance the resolution of Hi-C data.
    Wang B; Liu K; Li Y; Wang J
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37084258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin interaction-aware gene regulatory modeling with graph attention networks.
    Karbalayghareh A; Sahin M; Leslie CS
    Genome Res; 2022 May; 32(5):930-944. PubMed ID: 35396274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeCOOC Deconvoluted Hi-C Map Characterizes the Chromatin Architecture of Cells in Physiologically Distinctive Tissues.
    Wang J; Lu L; Zheng S; Wang D; Jin L; Zhang Q; Li M; Zhang Z
    Adv Sci (Weinh); 2023 Sep; 10(27):e2301058. PubMed ID: 37515382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of gene co-expression from chromatin contacts with graph attention network.
    Zhang K; Wang C; Sun L; Zheng J
    Bioinformatics; 2022 Sep; 38(19):4457-4465. PubMed ID: 35929807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. hicGAN infers super resolution Hi-C data with generative adversarial networks.
    Liu Q; Lv H; Jiang R
    Bioinformatics; 2019 Jul; 35(14):i99-i107. PubMed ID: 31510693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Hi-C technology in three-dimensional genomics research and disease pathogenesis analysis.
    Wang SZ; Jiang F; Zhu DL; Yang TL; Guo Y
    Yi Chuan; 2023 Apr; 45(4):279-294. PubMed ID: 37077163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Be-1DCNN: a neural network model for chromatin loop prediction based on bagging ensemble learning.
    Wu H; Zhou B; Zhou H; Zhang P; Wang M
    Brief Funct Genomics; 2023 Nov; 22(5):475-484. PubMed ID: 37133976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D genomics and its applications in precision medicine.
    Chen M; Liu X; Liu Q; Shi D; Li H
    Cell Mol Biol Lett; 2023 Mar; 28(1):19. PubMed ID: 36879202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graph embedding and unsupervised learning predict genomic sub-compartments from HiC chromatin interaction data.
    Ashoor H; Chen X; Rosikiewicz W; Wang J; Cheng A; Wang P; Ruan Y; Li S
    Nat Commun; 2020 Mar; 11(1):1173. PubMed ID: 32127534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does multi-way, long-range chromatin contact data advance 3D genome reconstruction?
    Olshen AB; Segal MR
    BMC Bioinformatics; 2023 Feb; 24(1):64. PubMed ID: 36829114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstructing spatial organizations of chromosomes through manifold learning.
    Zhu G; Deng W; Hu H; Ma R; Zhang S; Yang J; Peng J; Kaplan T; Zeng J
    Nucleic Acids Res; 2018 May; 46(8):e50. PubMed ID: 29408992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing long-range interactions by extracting free energies from genome-wide chromosome conformation capture data.
    Saberi S; Farré P; Cuvier O; Emberly E
    BMC Bioinformatics; 2015 May; 16():171. PubMed ID: 26001583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practical Analysis of Genome Contact Interaction Experiments.
    Carty MA; Elemento O
    Methods Mol Biol; 2016; 1418():177-89. PubMed ID: 27008015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HiC1Dmetrics: framework to extract various one-dimensional features from chromosome structure data.
    Wang J; Nakato R
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34850813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Four-Dimensional Chromosome Structure Prediction.
    Highsmith M; Cheng J
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.