These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

510 related articles for article (PubMed ID: 35764999)

  • 1. Development of a natural language processing algorithm to detect chronic cough in electronic health records.
    Bali V; Weaver J; Turzhitsky V; Schelfhout J; Paudel ML; Hulbert E; Peterson-Brandt J; Currie AG; Bakka D
    BMC Pulm Med; 2022 Jun; 22(1):256. PubMed ID: 35764999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying and Characterizing a Chronic Cough Cohort Through Electronic Health Records.
    Weiner M; Dexter PR; Heithoff K; Roberts AR; Liu Z; Griffith A; Hui S; Schelfhout J; Dicpinigaitis P; Doshi I; Weaver JP
    Chest; 2021 Jun; 159(6):2346-2355. PubMed ID: 33345951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applying interpretable deep learning models to identify chronic cough patients using EHR data.
    Luo X; Gandhi P; Zhang Z; Shao W; Han Z; Chandrasekaran V; Turzhitsky V; Bali V; Roberts AR; Metzger M; Baker J; La Rosa C; Weaver J; Dexter P; Huang K
    Comput Methods Programs Biomed; 2021 Oct; 210():106395. PubMed ID: 34525412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenges of Developing a Natural Language Processing Method With Electronic Health Records to Identify Persons With Chronic Mobility Disability.
    Agaronnik ND; Lindvall C; El-Jawahri A; He W; Iezzoni LI
    Arch Phys Med Rehabil; 2020 Oct; 101(10):1739-1746. PubMed ID: 32446905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Augmented intelligence with natural language processing applied to electronic health records for identifying patients with non-alcoholic fatty liver disease at risk for disease progression.
    Van Vleck TT; Chan L; Coca SG; Craven CK; Do R; Ellis SB; Kannry JL; Loos RJF; Bonis PA; Cho J; Nadkarni GN
    Int J Med Inform; 2019 Sep; 129():334-341. PubMed ID: 31445275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of natural language processing to identify vaccine-related anaphylaxis at five health care systems in the Vaccine Safety Datalink.
    Yu W; Zheng C; Xie F; Chen W; Mercado C; Sy LS; Qian L; Glenn S; Tseng HF; Lee G; Duffy J; McNeil MM; Daley MF; Crane B; McLean HQ; Jackson LA; Jacobsen SJ
    Pharmacoepidemiol Drug Saf; 2020 Feb; 29(2):182-188. PubMed ID: 31797475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural language processing of clinical notes for identification of critical limb ischemia.
    Afzal N; Mallipeddi VP; Sohn S; Liu H; Chaudhry R; Scott CG; Kullo IJ; Arruda-Olson AM
    Int J Med Inform; 2018 Mar; 111():83-89. PubMed ID: 29425639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mining peripheral arterial disease cases from narrative clinical notes using natural language processing.
    Afzal N; Sohn S; Abram S; Scott CG; Chaudhry R; Liu H; Kullo IJ; Arruda-Olson AM
    J Vasc Surg; 2017 Jun; 65(6):1753-1761. PubMed ID: 28189359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural language processing to identify lupus nephritis phenotype in electronic health records.
    Deng Y; Pacheco JA; Ghosh A; Chung A; Mao C; Smith JC; Zhao J; Wei WQ; Barnado A; Dorn C; Weng C; Liu C; Cordon A; Yu J; Tedla Y; Kho A; Ramsey-Goldman R; Walunas T; Luo Y
    BMC Med Inform Decis Mak; 2024 Mar; 22(Suppl 2):348. PubMed ID: 38433189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using natural language processing to identify opioid use disorder in electronic health record data.
    Singleton J; Li C; Akpunonu PD; Abner EL; Kucharska-Newton AM
    Int J Med Inform; 2023 Feb; 170():104963. PubMed ID: 36521420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural language processing to identify social determinants of health in Alzheimer's disease and related dementia from electronic health records.
    Wu W; Holkeboer KJ; Kolawole TO; Carbone L; Mahmoudi E
    Health Serv Res; 2023 Dec; 58(6):1292-1302. PubMed ID: 37534741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of Natural Language Processing of Electronic Health Records to Measure Goals-of-Care Discussions as a Clinical Trial Outcome.
    Lee RY; Kross EK; Torrence J; Li KS; Sibley J; Cohen T; Lober WB; Engelberg RA; Curtis JR
    JAMA Netw Open; 2023 Mar; 6(3):e231204. PubMed ID: 36862411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Getting More Out of Large Databases and EHRs with Natural Language Processing and Artificial Intelligence: The Future Is Here.
    Khosravi B; Rouzrokh P; Erickson BJ
    J Bone Joint Surg Am; 2022 Oct; 104(Suppl 3):51-55. PubMed ID: 36260045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A large language model-based generative natural language processing framework fine-tuned on clinical notes accurately extracts headache frequency from electronic health records.
    Chiang CC; Luo M; Dumkrieger G; Trivedi S; Chen YC; Chao CJ; Schwedt TJ; Sarker A; Banerjee I
    Headache; 2024 Apr; 64(4):400-409. PubMed ID: 38525734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural Language Processing for Improved Characterization of COVID-19 Symptoms: Observational Study of 350,000 Patients in a Large Integrated Health Care System.
    Malden DE; Tartof SY; Ackerson BK; Hong V; Skarbinski J; Yau V; Qian L; Fischer H; Shaw SF; Caparosa S; Xie F
    JMIR Public Health Surveill; 2022 Dec; 8(12):e41529. PubMed ID: 36446133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review.
    Koleck TA; Dreisbach C; Bourne PE; Bakken S
    J Am Med Inform Assoc; 2019 Apr; 26(4):364-379. PubMed ID: 30726935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ascertainment of Delirium Status Using Natural Language Processing From Electronic Health Records.
    Fu S; Lopes GS; Pagali SR; Thorsteinsdottir B; LeBrasseur NK; Wen A; Liu H; Rocca WA; Olson JE; St Sauver J; Sohn S
    J Gerontol A Biol Sci Med Sci; 2022 Mar; 77(3):524-530. PubMed ID: 35239951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using natural language processing to identify problem usage of prescription opioids.
    Carrell DS; Cronkite D; Palmer RE; Saunders K; Gross DE; Masters ET; Hylan TR; Von Korff M
    Int J Med Inform; 2015 Dec; 84(12):1057-64. PubMed ID: 26456569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Clinical Notes and Natural Language Processing for Automated HIV Risk Assessment.
    Feller DJ; Zucker J; Yin MT; Gordon P; Elhadad N
    J Acquir Immune Defic Syndr; 2018 Feb; 77(2):160-166. PubMed ID: 29084046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated feature selection of predictors in electronic medical records data.
    Gronsbell J; Minnier J; Yu S; Liao K; Cai T
    Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.