These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 35765004)

  • 1. Using zebrafish to understand reciprocal interactions between the nervous and immune systems and the microbial world.
    Levraud JP; Rawls JF; Clatworthy AE
    J Neuroinflammation; 2022 Jun; 19(1):170. PubMed ID: 35765004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interwoven processes in fish development: microbial community succession and immune maturation.
    Auclert LZ; Chhanda MS; Derome N
    PeerJ; 2024; 12():e17051. PubMed ID: 38560465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feed, Microbiota, and Gut Immunity: Using the Zebrafish Model to Understand Fish Health.
    López Nadal A; Ikeda-Ohtsubo W; Sipkema D; Peggs D; McGurk C; Forlenza M; Wiegertjes GF; Brugman S
    Front Immunol; 2020; 11():114. PubMed ID: 32117265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small fish, big discoveries: zebrafish shed light on microbial biomarkers for neuro-immune-cardiovascular health.
    Sree Kumar H; Wisner AS; Refsnider JM; Martyniuk CJ; Zubcevic J
    Front Physiol; 2023; 14():1186645. PubMed ID: 37324381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic Approaches Using Zebrafish to Study the Microbiota-Gut-Brain Axis in Neurological Disorders.
    Lee JG; Cho HJ; Jeong YM; Lee JS
    Cells; 2021 Mar; 10(3):. PubMed ID: 33807650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbiota-immune-brain interactions: A lifespan perspective.
    Ratsika A; Cruz Pereira JS; Lynch CMK; Clarke G; Cryan JF
    Curr Opin Neurobiol; 2023 Feb; 78():102652. PubMed ID: 36463579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intestinal
    Wang A; Zhang Z; Ding Q; Yang Y; Bindelle J; Ran C; Zhou Z
    Gut Microbes; 2021; 13(1):1-15. PubMed ID: 33840371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The scales of the zebrafish: host-microbiota interactions from proteins to populations.
    Burns AR; Guillemin K
    Curr Opin Microbiol; 2017 Aug; 38():137-141. PubMed ID: 28618368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathogen invasion changes the intestinal microbiota composition and induces innate immune responses in the zebrafish intestine.
    Yang HT; Zou SS; Zhai LJ; Wang Y; Zhang FM; An LG; Yang GW
    Fish Shellfish Immunol; 2017 Dec; 71():35-42. PubMed ID: 28964859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Neurochemicals in the Interaction between the Microbiota and the Immune and the Nervous System of the Host Organism.
    Oleskin AV; Shenderov BA; Rogovsky VS
    Probiotics Antimicrob Proteins; 2017 Sep; 9(3):215-234. PubMed ID: 28229287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Psychoneuroimmunology and immunopsychiatry of zebrafish.
    de Abreu MS; Giacomini ACVV; Zanandrea R; Dos Santos BE; Genario R; de Oliveira GG; Friend AJ; Amstislavskaya TG; Kalueff AV
    Psychoneuroendocrinology; 2018 Jun; 92():1-12. PubMed ID: 29609110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring interactions between xenobiotics, microbiota, and neurotoxicity in zebrafish.
    Bertotto LB; Catron TR; Tal T
    Neurotoxicology; 2020 Jan; 76():235-244. PubMed ID: 31783042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling gut-brain interactions in zebrafish.
    de Abreu MS; Giacomini ACVV; Sysoev M; Demin KA; Alekseeva PA; Spagnoli ST; Kalueff AV
    Brain Res Bull; 2019 May; 148():55-62. PubMed ID: 30890360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ontogenetic Differences in Dietary Fat Influence Microbiota Assembly in the Zebrafish Gut.
    Wong S; Stephens WZ; Burns AR; Stagaman K; David LA; Bohannan BJ; Guillemin K; Rawls JF
    mBio; 2015 Sep; 6(5):e00687-15. PubMed ID: 26419876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The zebrafish as a model for gastrointestinal tract-microbe interactions.
    Flores EM; Nguyen AT; Odem MA; Eisenhoffer GT; Krachler AM
    Cell Microbiol; 2020 Mar; 22(3):e13152. PubMed ID: 31872937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial communities modulating brain functioning and behaviors in zebrafish: A mechanistic approach.
    Mohanta L; Das BC; Patri M
    Microb Pathog; 2020 Aug; 145():104251. PubMed ID: 32418919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota.
    Rawls JF; Samuel BS; Gordon JI
    Proc Natl Acad Sci U S A; 2004 Mar; 101(13):4596-601. PubMed ID: 15070763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zebrafish as a model for understanding enteric nervous system interactions in the developing intestinal tract.
    Ganz J; Melancon E; Eisen JS
    Methods Cell Biol; 2016; 134():139-64. PubMed ID: 27312493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Live Imaging of Host-Parasite Interactions in a Zebrafish Infection Model Reveals Cryptococcal Determinants of Virulence and Central Nervous System Invasion.
    Tenor JL; Oehlers SH; Yang JL; Tobin DM; Perfect JR
    mBio; 2015 Sep; 6(5):e01425-15. PubMed ID: 26419880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polystyrene Nanoplastics Toxicity to Zebrafish: Dysregulation of the Brain-Intestine-Microbiota Axis.
    Teng M; Zhao X; Wang C; Wang C; White JC; Zhao W; Zhou L; Duan M; Wu F
    ACS Nano; 2022 May; 16(5):8190-8204. PubMed ID: 35507640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.