These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35765200)

  • 21. Nano-hydroxyapatite-alginate-gelatin microcapsule as a potential osteogenic building block for modular bone tissue engineering.
    Nabavinia M; Khoshfetrat AB; Naderi-Meshkin H
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():67-77. PubMed ID: 30678955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs.
    Navaei A; Saini H; Christenson W; Sullivan RT; Ros R; Nikkhah M
    Acta Biomater; 2016 Sep; 41():133-46. PubMed ID: 27212425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation and Properties of Double-Crosslinked Hydroxyapatite Composite Hydrogels.
    Zhao B; Zhao M; Li L; Sun S; Yu H; Cheng Y; Yang Y; Fan Y; Sun Y
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077353
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In situ forming gelatin/hyaluronic acid hydrogel for tissue sealing and hemostasis.
    Luo JW; Liu C; Wu JH; Zhao DH; Lin LX; Fan HM; Sun YL
    J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):790-797. PubMed ID: 31225694
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzymatically gellable gelatin improves nano-hydroxyapatite-alginate microcapsule characteristics for modular bone tissue formation.
    Firouzi N; Baradar Khoshfetrat A; Kazemi D
    J Biomed Mater Res A; 2020 Feb; 108(2):340-350. PubMed ID: 31618526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs.
    Kharaziha M; Shin SR; Nikkhah M; Topkaya SN; Masoumi N; Annabi N; Dokmeci MR; Khademhosseini A
    Biomaterials; 2014 Aug; 35(26):7346-54. PubMed ID: 24927679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of cellular adhesiveness in hyaluronic acid-based hydrogel through varying degrees of phenol moiety cross-linking.
    Bagheri S; Bagher Z; Hassanzadeh S; Simorgh S; Kamrava SK; Nooshabadi VT; Shabani R; Jalessi M; Khanmohammadi M
    J Biomed Mater Res A; 2021 May; 109(5):649-658. PubMed ID: 32608143
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering.
    Hwang CM; Sant S; Masaeli M; Kachouie NN; Zamanian B; Lee SH; Khademhosseini A
    Biofabrication; 2010 Sep; 2(3):035003. PubMed ID: 20823504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation and evaluation of hydrogel-composites from methacrylated hyaluronic acid, alginate, and gelatin for tissue engineering.
    Möller L; Krause A; Dahlmann J; Gruh I; Kirschning A; Dräger G
    Int J Artif Organs; 2011 Feb; 34(2):93-102. PubMed ID: 21374568
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of the effects of four crosslinking agents on gelatin hydrogel for myocardial tissue engineering applications.
    Ye J; Xiao Z; Gao L; Zhang J; He L; Zhang H; Liu Q; Yang G
    Biomed Mater; 2021 May; 16(4):. PubMed ID: 33975301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of immobilizing of low molecular weight hyaluronic acid within gelatin-based hydrogel through enzymatic reaction on behavior of enclosed endothelial cells.
    Khanmohammadi M; Sakai S; Taya M
    Int J Biol Macromol; 2017 Apr; 97():308-316. PubMed ID: 28089929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of an oxygen-releasing electroconductive in-situ crosslinkable hydrogel based on oxidized pectin and grafted gelatin for tissue engineering applications.
    Nejati S; Karimi Soflou R; Khorshidi S; Karkhaneh A
    Colloids Surf B Biointerfaces; 2020 Dec; 196():111347. PubMed ID: 32949923
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering.
    Shi W; Fang F; Kong Y; Greer SE; Kuss M; Liu B; Xue W; Jiang X; Lovell P; Mohs AM; Dudley AT; Li T; Duan B
    Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34905737
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels.
    Camci-Unal G; Cuttica D; Annabi N; Demarchi D; Khademhosseini A
    Biomacromolecules; 2013 Apr; 14(4):1085-92. PubMed ID: 23419055
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of Electrically Conductive Double-Network Hydrogels via One-Step Facile Strategy for Cardiac Tissue Engineering.
    Yang B; Yao F; Hao T; Fang W; Ye L; Zhang Y; Wang Y; Li J; Wang C
    Adv Healthc Mater; 2016 Feb; 5(4):474-88. PubMed ID: 26626543
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Double - network hydrogel based on exopolysaccharides as a biomimetic extracellular matrix to augment articular cartilage regeneration.
    Cai Z; Tang Y; Wei Y; Wang P; Zhang H
    Acta Biomater; 2022 Oct; 152():124-143. PubMed ID: 36055611
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Peptide and peptide-carbon nanotube hydrogels as scaffolds for tissue & 3D tumor engineering.
    Sheikholeslam M; Wheeler SD; Duke KG; Marsden M; Pritzker M; Chen P
    Acta Biomater; 2018 Mar; 69():107-119. PubMed ID: 29248638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enzymatic conjugation of a bioactive peptide into an injectable hyaluronic acid-tyramine hydrogel system to promote the formation of functional vasculature.
    Wang LS; Lee F; Lim J; Du C; Wan AC; Lee SS; Kurisawa M
    Acta Biomater; 2014 Jun; 10(6):2539-50. PubMed ID: 24561710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gelatin improves peroxidase-mediated alginate hydrogel characteristics as a potential injectable hydrogel for soft tissue engineering applications.
    Morshedloo F; Khoshfetrat AB; Kazemi D; Ahmadian M
    J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2950-2960. PubMed ID: 32351038
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laccase-mediated construction of flexible double-network hydrogels based on silk fibroin and tyramine-modified hyaluronic acid.
    Wang L; Xu B; Nong Y; Wang P; Yu Y; Deng C; Yuan J; Wang Q
    Int J Biol Macromol; 2020 Oct; 160():795-805. PubMed ID: 32497666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.