These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 35765651)
1. Application of interpretable machine learning for early prediction of prognosis in acute kidney injury. Hu C; Tan Q; Zhang Q; Li Y; Wang F; Zou X; Peng Z Comput Struct Biotechnol J; 2022; 20():2861-2870. PubMed ID: 35765651 [TBL] [Abstract][Full Text] [Related]
2. Interpretable Machine Learning for Early Prediction of Prognosis in Sepsis: A Discovery and Validation Study. Hu C; Li L; Huang W; Wu T; Xu Q; Liu J; Hu B Infect Dis Ther; 2022 Jun; 11(3):1117-1132. PubMed ID: 35399146 [TBL] [Abstract][Full Text] [Related]
3. Interpretable machine learning model for predicting acute kidney injury in critically ill patients. Li X; Wang P; Zhu Y; Zhao W; Pan H; Wang D BMC Med Inform Decis Mak; 2024 May; 24(1):148. PubMed ID: 38822285 [TBL] [Abstract][Full Text] [Related]
4. Explainable Machine-Learning Model for Prediction of In-Hospital Mortality in Septic Patients Requiring Intensive Care Unit Readmission. Hu C; Li L; Li Y; Wang F; Hu B; Peng Z Infect Dis Ther; 2022 Aug; 11(4):1695-1713. PubMed ID: 35835943 [TBL] [Abstract][Full Text] [Related]
5. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases. Peng S; Huang J; Liu X; Deng J; Sun C; Tang J; Chen H; Cao W; Wang W; Duan X; Luo X; Peng S Front Cardiovasc Med; 2022; 9():994359. PubMed ID: 36312291 [TBL] [Abstract][Full Text] [Related]
6. Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation. Zhou S; Lu Z; Liu Y; Wang M; Zhou W; Cui X; Zhang J; Xiao W; Hua T; Zhu H; Yang M Eur J Med Res; 2024 Jan; 29(1):14. PubMed ID: 38172962 [TBL] [Abstract][Full Text] [Related]
7. Development and Validation of an Interpretable Machine Learning Model for Early Prognosis Prediction in ICU Patients with Malignant Tumors and Hyperkalemia. Bu ZJ; Jiang N; Li KC; Lu ZL; Zhang N; Yan SS; Chen ZL; Hao YH; Zhang YH; Xu RB; Chi HW; Chen ZY; Liu JP; Wang D; Xu F; Liu ZL Medicine (Baltimore); 2024 Jul; 103(30):e38747. PubMed ID: 39058887 [TBL] [Abstract][Full Text] [Related]
8. Construction and validation of prognostic models in critically Ill patients with sepsis-associated acute kidney injury: interpretable machine learning approach. Fan Z; Jiang J; Xiao C; Chen Y; Xia Q; Wang J; Fang M; Wu Z; Chen F J Transl Med; 2023 Jun; 21(1):406. PubMed ID: 37349774 [TBL] [Abstract][Full Text] [Related]
9. An interpretable machine learning model for predicting 28-day mortality in patients with sepsis-associated liver injury. Wen C; Zhang X; Li Y; Xiao W; Hu Q; Lei X; Xu T; Liang S; Gao X; Zhang C; Yu Z; Lü M PLoS One; 2024; 19(5):e0303469. PubMed ID: 38768153 [TBL] [Abstract][Full Text] [Related]
10. Machine learning algorithm to predict mortality in critically ill patients with sepsis-associated acute kidney injury. Li X; Wu R; Zhao W; Shi R; Zhu Y; Wang Z; Pan H; Wang D Sci Rep; 2023 Mar; 13(1):5223. PubMed ID: 36997585 [TBL] [Abstract][Full Text] [Related]
11. AKIML Sun T; Yue X; Zhang G; Lin Q; Chen X; Huang T; Li X; Liu W; Tao Z Clin Chim Acta; 2024 Jun; 559():119705. PubMed ID: 38702035 [TBL] [Abstract][Full Text] [Related]
12. Machine Learning for Predicting Risk and Prognosis of Acute Kidney Disease in Critically Ill Elderly Patients During Hospitalization: Internet-Based and Interpretable Model Study. Li M; Han S; Liang F; Hu C; Zhang B; Hou Q; Zhao S J Med Internet Res; 2024 May; 26():e51354. PubMed ID: 38691403 [TBL] [Abstract][Full Text] [Related]
13. Machine learning-based prediction of in-hospital mortality for critically ill patients with sepsis-associated acute kidney injury. Gao T; Nong Z; Luo Y; Mo M; Chen Z; Yang Z; Pan L Ren Fail; 2024 Dec; 46(1):2316267. PubMed ID: 38369749 [TBL] [Abstract][Full Text] [Related]
14. Predicting sepsis in-hospital mortality with machine learning: a multi-center study using clinical and inflammatory biomarkers. Zhang G; Shao F; Yuan W; Wu J; Qi X; Gao J; Shao R; Tang Z; Wang T Eur J Med Res; 2024 Mar; 29(1):156. PubMed ID: 38448999 [TBL] [Abstract][Full Text] [Related]
15. Predicting acute kidney injury risk in acute myocardial infarction patients: An artificial intelligence model using medical information mart for intensive care databases. Cai D; Xiao T; Zou A; Mao L; Chi B; Wang Y; Wang Q; Ji Y; Sun L Front Cardiovasc Med; 2022; 9():964894. PubMed ID: 36158815 [TBL] [Abstract][Full Text] [Related]
16. Machine learning algorithms assist early evaluation of enteral nutrition in ICU patients. Wang YX; Li XL; Zhang LH; Li HN; Liu XM; Song W; Pang XF Front Nutr; 2023; 10():1060398. PubMed ID: 37125050 [TBL] [Abstract][Full Text] [Related]
17. Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study. Li J; Liu S; Hu Y; Zhu L; Mao Y; Liu J J Med Internet Res; 2022 Aug; 24(8):e38082. PubMed ID: 35943767 [TBL] [Abstract][Full Text] [Related]
18. Explainable ensemble machine learning model for prediction of 28-day mortality risk in patients with sepsis-associated acute kidney injury. Yang J; Peng H; Luo Y; Zhu T; Xie L Front Med (Lausanne); 2023; 10():1165129. PubMed ID: 37275353 [TBL] [Abstract][Full Text] [Related]
19. Interpretable machine learning for predicting 28-day all-cause in-hospital mortality for hypertensive ischemic or hemorrhagic stroke patients in the ICU: a multi-center retrospective cohort study with internal and external cross-validation. Huang J; Chen H; Deng J; Liu X; Shu T; Yin C; Duan M; Fu L; Wang K; Zeng S Front Neurol; 2023; 14():1185447. PubMed ID: 37614971 [TBL] [Abstract][Full Text] [Related]
20. Interpretable machine learning model for early prediction of delirium in elderly patients following intensive care unit admission: a derivation and validation study. Tang D; Ma C; Xu Y Front Med (Lausanne); 2024; 11():1399848. PubMed ID: 38828233 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]