BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 35766062)

  • 1. Statistical power of transcriptome-wide association studies.
    He R; Xue H; Pan W;
    Genet Epidemiol; 2022 Dec; 46(8):572-588. PubMed ID: 35766062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian genome-wide TWAS with reference transcriptomic data of brain and blood tissues identified 141 risk genes for Alzheimer's disease dementia.
    Guo S; Yang J
    Alzheimers Res Ther; 2024 Jun; 16(1):120. PubMed ID: 38824563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Some statistical consideration in transcriptome-wide association studies.
    Xue H; Pan W;
    Genet Epidemiol; 2020 Apr; 44(3):221-232. PubMed ID: 31821608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accounting for nonlinear effects of gene expression identifies additional associated genes in transcriptome-wide association studies.
    Lin Z; Xue H; Malakhov MM; Knutson KA; Pan W
    Hum Mol Genet; 2022 Jul; 31(14):2462-2470. PubMed ID: 35043938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeLIVR: a deep learning approach to IV regression for testing nonlinear causal effects in transcriptome-wide association studies.
    He R; Liu M; Lin Z; Zhuang Z; Shen X; Pan W
    Biostatistics; 2024 Apr; 25(2):468-485. PubMed ID: 36610078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian Genome-wide TWAS Method to Leverage both cis- and trans-eQTL Information through Summary Statistics.
    Luningham JM; Chen J; Tang S; De Jager PL; Bennett DA; Buchman AS; Yang J
    Am J Hum Genet; 2020 Oct; 107(4):714-726. PubMed ID: 32961112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies.
    Feng H; Mancuso N; Gusev A; Majumdar A; Major M; Pasaniuc B; Kraft P
    PLoS Genet; 2021 Apr; 17(4):e1008973. PubMed ID: 33831007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MATS: a novel multi-ancestry transcriptome-wide association study to account for heterogeneity in the effects of cis-regulated gene expression on complex traits.
    Knutson KA; Pan W
    Hum Mol Genet; 2023 Apr; 32(8):1237-1251. PubMed ID: 36179104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Variance-Component TWAS method for studying complex human diseases with applications to Alzheimer's dementia.
    Tang S; Buchman AS; De Jager PL; Bennett DA; Epstein MP; Yang J
    PLoS Genet; 2021 Apr; 17(4):e1009482. PubMed ID: 33798195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A powerful and versatile colocalization test.
    Deng Y; Pan W
    PLoS Comput Biol; 2020 Apr; 16(4):e1007778. PubMed ID: 32275709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies.
    Li B; Veturi Y; Bradford Y; Verma SS; Verma A; Lucas AM; Haas DW; Ritchie MD
    Pac Symp Biocomput; 2019; 24():296-307. PubMed ID: 30864331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network regression analysis in transcriptome-wide association studies.
    Jin X; Zhang L; Ji J; Ju T; Zhao J; Yuan Z
    BMC Genomics; 2022 Aug; 23(1):562. PubMed ID: 35933330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Power analysis of transcriptome-wide association study: Implications for practical protocol choice.
    Cao C; Ding B; Li Q; Kwok D; Wu J; Long Q
    PLoS Genet; 2021 Feb; 17(2):e1009405. PubMed ID: 33635859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Multi-tissue Transcriptome Analysis of Human Metabolites Guides Interpretability of Associations Based on Multi-SNP Models for Gene Expression.
    Ndungu A; Payne A; Torres JM; van de Bunt M; McCarthy MI
    Am J Hum Genet; 2020 Feb; 106(2):188-201. PubMed ID: 31978332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian genome-wide TWAS with reference transcriptomic data of brain and blood tissues identified 93 risk genes for Alzheimer's disease dementia.
    Guo S; Yang J
    medRxiv; 2023 Jul; ():. PubMed ID: 37503151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-tissue, splicing-based joint transcriptome-wide association study identifies susceptibility genes for breast cancer.
    Gao G; McClellan J; Barbeira AN; Fiorica PN; Li JL; Mu Z; Olopade OI; Huo D; Im HK
    Am J Hum Genet; 2024 Jun; 111(6):1100-1113. PubMed ID: 38733992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating eQTL and GWAS data characterises established and identifies novel migraine risk loci.
    Ghaffar A; ; Nyholt DR
    Hum Genet; 2023 Aug; 142(8):1113-1137. PubMed ID: 37245199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opportunities and challenges for transcriptome-wide association studies.
    Wainberg M; Sinnott-Armstrong N; Mancuso N; Barbeira AN; Knowles DA; Golan D; Ermel R; Ruusalepp A; Quertermous T; Hao K; Björkegren JLM; Im HK; Pasaniuc B; Rivas MA; Kundaje A
    Nat Genet; 2019 Apr; 51(4):592-599. PubMed ID: 30926968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SUMMIT-FA: a new resource for improved transcriptome imputation using functional annotations.
    Melton HJ; Zhang Z; Wu C
    Hum Mol Genet; 2024 Mar; 33(7):624-635. PubMed ID: 38129112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.