These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35766117)

  • 21. First-Principles Structural, Mechanical, and Thermodynamic Calculations of the Negative Thermal Expansion Compound Zr
    Weck PF; Kim E; Gordon ME; Greathouse JA; Dingreville R; Bryan CR
    ACS Omega; 2018 Nov; 3(11):15780-15788. PubMed ID: 31458228
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding Large Negative Thermal Expansion of NdFe(CN)
    Jiao Y; Gao Q; Sanson A; Liang E; Sun Q; Chen J
    Inorg Chem; 2022 May; 61(20):7813-7819. PubMed ID: 35543502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermomechanical properties of zero thermal expansion materials from theory and experiments.
    Erlebach A; Thieme C; Müller C; Hoffmann S; Höche T; Rüssel C; Sierka M
    Phys Chem Chem Phys; 2020 Sep; 22(33):18518-18525. PubMed ID: 32780039
    [TBL] [Abstract][Full Text] [Related]  

  • 24. First-principles mode Gruneisen parameters and negative thermal expansion in α-ZrW2O8.
    Gava V; Martinotto AL; Perottoni CA
    Phys Rev Lett; 2012 Nov; 109(19):195503. PubMed ID: 23215399
    [TBL] [Abstract][Full Text] [Related]  

  • 25. First Principles Investigation of Anomalous Pressure-Dependent Thermal Conductivity of Chalcopyrites.
    Elalfy L; Music D; Hu M
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31731398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. First-Principles Analysis of Vibrational Properties of Type II SiGe Alloy Clathrates.
    Xue D; Myles CW
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31083355
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Negative Thermal Expansion of Ultrathin Metal Nanowires: A Computational Study.
    Ho DT; Kwon SY; Park HS; Kim SY
    Nano Lett; 2017 Aug; 17(8):5113-5118. PubMed ID: 28678511
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Size and crystal symmetry breaking effects on negative thermal expansion in ScF
    Wang C; Chang D; Wang J; Gao Q; Zhang Y; Niu C; Liu C; Jia Y
    Phys Chem Chem Phys; 2021 Nov; 23(43):24814-24822. PubMed ID: 34714310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of bond on negative thermal expansion of Prussian blue analogues MCo(CN)
    Li Y; Gao Q; Chang D; Sun P; Liu J; Jia Y; Liang E; Sun Q
    J Phys Condens Matter; 2020 Aug; 32(45):. PubMed ID: 32688349
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biaxial negative thermal expansion in carbon nets - graphyne and derivatives.
    Mondal S; Datta A
    Phys Chem Chem Phys; 2023 Jul; 25(28):19091-19097. PubMed ID: 37427602
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigating anomalous thermal expansion of copper halides by inelastic neutron scattering and ab initio phonon calculations.
    Gopakumar AM; Gupta MK; Mittal R; Rols S; Chaplot SL
    Phys Chem Chem Phys; 2017 May; 19(19):12107-12116. PubMed ID: 28443875
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discovering Large Isotropic Negative Thermal Expansion in Framework Compound AgB(CN)
    Gao Q; Wang J; Sanson A; Sun Q; Liang E; Xing X; Chen J
    J Am Chem Soc; 2020 Apr; 142(15):6935-6939. PubMed ID: 32233466
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-Frequency Phonon Driven Negative Thermal Expansion in Cubic GaFe(CN)
    Gao Q; Shi N; Sun Q; Sanson A; Milazzo R; Carnera A; Zhu H; Lapidus SH; Ren Y; Huang Q; Chen J; Xing X
    Inorg Chem; 2018 Sep; 57(17):10918-10924. PubMed ID: 30106577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electronic structure, bonding and phonon modes in the negative thermal expansion materials of Cd(CN)(2) and Zn(CN)(2).
    Ding P; Liang EJ; Jia Y; Du ZY
    J Phys Condens Matter; 2008 Jul; 20(27):275224. PubMed ID: 21694385
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D negative thermal expansion in orthorhombic MIL-68(In).
    Liu Z; Li Q; Zhu H; Lin K; Deng J; Chen J; Xing X
    Chem Commun (Camb); 2018 May; 54(45):5712-5715. PubMed ID: 29774355
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transforming Thermal Expansion from Positive to Negative: The Case of Cubic Magnetic Compounds of (Zr,Nb)Fe
    Song Y; Sun Q; Yokoyama T; Zhu H; Li Q; Huang R; Ren Y; Huang Q; Xing X; Chen J
    J Phys Chem Lett; 2020 Mar; 11(5):1954-1961. PubMed ID: 32073860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of Uniaxial Negative Thermal Expansion in Layered Perovskites by Tuning Layer Thickness.
    Ablitt C; Mostofi AA; Bristowe NC; Senn MS
    Front Chem; 2018; 6():455. PubMed ID: 30406076
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Uniaxial Negative Thermal Expansion, Negative Linear Compressibility, and Negative Poisson's Ratio Induced by Specific Topology in Zn[Au(CN)
    Wang L; Luo H; Deng S; Sun Y; Wang C
    Inorg Chem; 2017 Dec; 56(24):15101-15109. PubMed ID: 29189011
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lattice thermal expansion and anisotropic displacements in 𝜶-sulfur from diffraction experiments and first-principles theory.
    George J; Deringer VL; Wang A; Müller P; Englert U; Dronskowski R
    J Chem Phys; 2016 Dec; 145(23):234512. PubMed ID: 28010090
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms and Materials for NTE.
    Attfield JP
    Front Chem; 2018; 6():371. PubMed ID: 30186833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.