These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35766308)

  • 1. Superior Multielectron-Transferring Energy Storage by π-d Conjugated Frameworks.
    Xia D; Sakaushi K; Lyalin A; Wada K; Kumar S; Amores M; Maeda H; Sasaki S; Taketsugu T; Nishihara H
    Small; 2022 Aug; 18(33):e2202861. PubMed ID: 35766308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Dimensional π-Conjugated Frameworks as a Model System to Unveil a Multielectron-Transfer-Based Energy Storage Mechanism.
    Sakaushi K; Nishihara H
    Acc Chem Res; 2021 Aug; 54(15):3003-3015. PubMed ID: 33998232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multielectron-Transfer-based Rechargeable Energy Storage of Two-Dimensional Coordination Frameworks with Non-Innocent Ligands.
    Wada K; Sakaushi K; Sasaki S; Nishihara H
    Angew Chem Int Ed Engl; 2018 Jul; 57(29):8886-8890. PubMed ID: 29675949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Record Alkali Metal Intercalation by Highly Charged Corannulene.
    Zabula AV; Spisak SN; Filatov AS; Rogachev AY; Petrukhina MA
    Acc Chem Res; 2018 Jun; 51(6):1541-1549. PubMed ID: 29874040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can Multielectron Intercalation Reactions Be the Basis of Next Generation Batteries?
    Whittingham MS; Siu C; Ding J
    Acc Chem Res; 2018 Feb; 51(2):258-264. PubMed ID: 29327579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multielectron, Cation and Anion Redox in Lithium-Rich Iron Sulfide Cathodes.
    Hansen CJ; Zak JJ; Martinolich AJ; Ko JS; Bashian NH; Kaboudvand F; Van der Ven A; Melot BC; Nelson Weker J; See KA
    J Am Chem Soc; 2020 Apr; 142(14):6737-6749. PubMed ID: 32223192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple Anionic Transition-Metal Oxycarbide for Better Lithium Storage and Facilitated Multielectron Reactions.
    Cuan J; Zhou Y; Zhang J; Zhou T; Liang G; Li S; Yu X; Pang WK; Guo Z
    ACS Nano; 2019 Oct; 13(10):11665-11675. PubMed ID: 31508937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Redox-Active 2D Metal-Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity.
    Jiang Q; Xiong P; Liu J; Xie Z; Wang Q; Yang XQ; Hu E; Cao Y; Sun J; Xu Y; Chen L
    Angew Chem Int Ed Engl; 2020 Mar; 59(13):5273-5277. PubMed ID: 31893570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reversible copper extrusion-insertion electrode for rechargeable Li batteries.
    Morcrette M; Rozier P; Dupont L; Mugnier E; Sannier L; Galy J; Tarascon JM
    Nat Mater; 2003 Nov; 2(11):755-61. PubMed ID: 14578878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordination Polymers for High-Capacity Li-Ion Batteries: Metal-Dependent Solid-State Reversibility.
    Lee HH; Lee JB; Park Y; Park KH; Okyay MS; Shin DS; Kim S; Park J; Park N; An BK; Jung YS; Lee HW; Lee KT; Hong SY
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22110-22118. PubMed ID: 29901390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal Sulfides@Carbon Microfiber Networks for Boosting Lithium Ion/Sodium Ion Storage via a General Metal- Aspergillus niger Bioleaching Strategy.
    Li J; Wang L; Li L; Lv C; Zatovsky IV; Han W
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8072-8080. PubMed ID: 30722661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Electron Redox Enabled Dithiocarboxylate Electrode for Superior Lithium Storage Performance.
    Wang J; Zhao H; Xu L; Yang Y; He G; Du Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35469-35476. PubMed ID: 30252431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon- and Nitrogen-Based Organic Frameworks.
    Sakaushi K; Antonietti M
    Acc Chem Res; 2015 Jun; 48(6):1591-600. PubMed ID: 26000989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Progress in Multivalent Metal (Mg, Zn, Ca, and Al) and Metal-Ion Rechargeable Batteries with Organic Materials as Promising Electrodes.
    Xie J; Zhang Q
    Small; 2019 Apr; 15(15):e1805061. PubMed ID: 30848095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly reversible lithium storage in cobalt 2,5-dioxido-1,4-benzenedicarboxylate metal-organic frameworks boosted by pseudocapacitance.
    Liao Y; Li C; Lou X; Wang P; Yang Q; Shen M; Hu B
    J Colloid Interface Sci; 2017 Nov; 506():365-372. PubMed ID: 28750238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Center Charge Density Enables Conductive 2D Metal-Organic Frameworks with Exceptionally High Pseudocapacitance and Energy Density for Energy Storage Devices.
    Cheng S; Gao W; Cao Z; Yang Y; Xie E; Fu J
    Adv Mater; 2022 Apr; 34(14):e2109870. PubMed ID: 35112396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry.
    Lu K; Hu Z; Ma J; Ma H; Dai L; Zhang J
    Nat Commun; 2017 Sep; 8(1):527. PubMed ID: 28904375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Orbital Principles of Oxygen-Redox Battery Electrodes.
    Okubo M; Yamada A
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):36463-36472. PubMed ID: 29016101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Conductive Two-Dimensional Metal-Organic Frameworks for Resilient Lithium Storage with Superb Rate Capability.
    Wu Z; Adekoya D; Huang X; Kiefel MJ; Xie J; Xu W; Zhang Q; Zhu D; Zhang S
    ACS Nano; 2020 Sep; 14(9):12016-12026. PubMed ID: 32833424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.