These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 35766335)
1. Interfacial engineered RDX/TATB energetic co-particles for enhanced safety performance and thermal stability. Qu Y; Qian W; Zhang J; Gong F; Xie Z; Yang Z; Nie F; Zhao X Dalton Trans; 2022 Jul; 51(27):10527-10534. PubMed ID: 35766335 [TBL] [Abstract][Full Text] [Related]
2. Size effect on the pyrolysis of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) nanoparticles: a ReaxFF molecular dynamics study. Guan J; Dong G; Lv J; Zhang L; Yang G; Huang X; Tan L Phys Chem Chem Phys; 2024 Oct; 26(40):26030-26036. PubMed ID: 39373077 [TBL] [Abstract][Full Text] [Related]
3. Core@Double-Shell Structured Energetic Composites with Reduced Sensitivity and Enhanced Mechanical Properties. Lin C; Huang B; Gong F; Yang Z; Liu J; Zhang J; Zeng C; Li Y; Li J; Guo S ACS Appl Mater Interfaces; 2019 Aug; 11(33):30341-30351. PubMed ID: 31356045 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and Detonation Properties of 5-Amino-2,4,6-trinitro-1,3-dihydroxy-benzene. Zhang X; Xiong H; Yang H; Cheng G ChemistryOpen; 2017 Jun; 6(3):447-451. PubMed ID: 28638778 [TBL] [Abstract][Full Text] [Related]
5. Super impact stable TATB explosives recrystallized by bicarbonate ionic liquids with a record solubility. Yuan WL; Tao GH; Zhang L; Zhang Z; Xue Y; He L; Huang J; Yu W Sci Rep; 2020 Mar; 10(1):4477. PubMed ID: 32161293 [TBL] [Abstract][Full Text] [Related]
6. Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations. Zhang L; Zybin SV; van Duin AC; Dasgupta S; Goddard WA; Kober EM J Phys Chem A; 2009 Oct; 113(40):10619-40. PubMed ID: 19791809 [TBL] [Abstract][Full Text] [Related]
7. Energetic salts based on furazan-functionalized tetrazoles: routes to boost energy. Wei H; Zhang J; He C; Shreeve JM Chemistry; 2015 Jun; 21(23):8607-12. PubMed ID: 25925025 [TBL] [Abstract][Full Text] [Related]
8. Preparation of Core-Shell-Structured RDX@PVDF Microspheres with Improved Thermal Stability and Decreased Mechanical Sensitivity. Wu H; Jiang A; Li M; Wang Y; Zhao F; Li Y Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297840 [TBL] [Abstract][Full Text] [Related]
9. Enhanced Interfacial and Mechanical Properties of PBX Composites via Surface Modification on Energetic Crystals. Zeng C; Yang Z; Zhang J; Li Y; Lin C; He G; Zhao X; Liu S; Gong F Polymers (Basel); 2019 Aug; 11(8):. PubMed ID: 31387242 [TBL] [Abstract][Full Text] [Related]
10. Unusual Cu-Co/GO Composite with Special High Organic Content Synthesized by an Wang J; Lian X; Yan Q; Gao D; Zhao F; Xu K ACS Appl Mater Interfaces; 2020 Jun; 12(25):28496-28509. PubMed ID: 32453571 [TBL] [Abstract][Full Text] [Related]
11. Photolysis of the Insensitive Explosive 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB). Halasz A; Hawari J; Perreault NN Molecules; 2021 Dec; 27(1):. PubMed ID: 35011446 [TBL] [Abstract][Full Text] [Related]
12. Mechanochemical fabrication and properties of CL-20/RDX nano co/mixed crystals. Song X; Wang Y; Zhao S; Li F RSC Adv; 2018 Sep; 8(59):34126-34135. PubMed ID: 35548843 [TBL] [Abstract][Full Text] [Related]
13. Unveiling the unprecedented catalytic capability of micro-sized Co-ZIF-L for the thermal decomposition of RDX by 2D-structure-induced mechanism reversal. Ren JT; Wei D; Tan BJ; Hu R; Gao YC; Wang XH; Yang WT RSC Adv; 2023 Apr; 13(19):12677-12684. PubMed ID: 37101528 [TBL] [Abstract][Full Text] [Related]
14. Preparation of a superfine RDX/Al composite as an energetic material by mechanical ball-milling method and the study of its thermal properties. Xiao L; Zhang Y; Wang X; Hao G; Liu J; Ke X; Chen T; Jiang W RSC Adv; 2018 Nov; 8(66):38047-38055. PubMed ID: 35558610 [TBL] [Abstract][Full Text] [Related]
15. Theoretical calculation into the effect of molar ratio on the structures, stability, mechanical properties and detonation performance of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane/ 1,3,5-trinitro-1,3,5-triazacyco-hexane cocrystal. Shi YB; Bai LF; Li JH; Sun GA; Gong J; Ju X J Mol Model; 2019 Sep; 25(9):299. PubMed ID: 31482441 [TBL] [Abstract][Full Text] [Related]
16. Persistence of 2,4,6-triamino-1,3,5-trinitrobenzene in the environment. Christian O; Spencer M; Ladyman M; Persico F; Gutierrez-Carazo E; Kadansky E; Temple T Environ Res; 2023 Dec; 239(Pt 1):117378. PubMed ID: 37832768 [TBL] [Abstract][Full Text] [Related]
17. The structural and electronic properties of (001) surface of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) with first-principles calculations. Qin H; Zheng Q; Zhou YX; Li F; Li HD; Liu QJ; Liu ZT J Mol Model; 2023 Dec; 30(1):7. PubMed ID: 38091173 [TBL] [Abstract][Full Text] [Related]
18. Thermal decomposition of energetic materials. 5. reaction processes of 1,3,5-trinitrohexahydro-s-triazine below its melting point. Maharrey S; Behrens R J Phys Chem A; 2005 Dec; 109(49):11236-49. PubMed ID: 16331907 [TBL] [Abstract][Full Text] [Related]