These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35766444)

  • 21. Spatial facilitation is involved in flash-lag effect.
    Maiche A; Budelli R; Gómez-Sena L
    Vision Res; 2007 Jun; 47(12):1655-61. PubMed ID: 17445857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cathodal transcranial direct-current stimulation over right posterior parietal cortex enhances human temporal discrimination ability.
    Oyama F; Ishibashi K; Iwanaga K
    J Physiol Anthropol; 2017 Dec; 36(1):41. PubMed ID: 29202824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cathodal HD-tDCS on the right V5 improves motion perception in humans.
    Zito GA; Senti T; Cazzoli D; Müri RM; Mosimann UP; Nyffeler T; Nef T
    Front Behav Neurosci; 2015; 9():257. PubMed ID: 26441582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Motion signals bias localization judgments: a unified explanation for the flash-lag, flash-drag, flash-jump, and Frohlich illusions.
    Eagleman DM; Sejnowski TJ
    J Vis; 2007 Mar; 7(4):3. PubMed ID: 17461687
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-session tDCS over the dominant hemisphere affects contralateral spectral EEG power, but does not enhance neurofeedback-guided event-related desynchronization of the non-dominant hemisphere's sensorimotor rhythm.
    Mondini V; Mangia AL; Cappello A
    PLoS One; 2018; 13(3):e0193004. PubMed ID: 29513682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predictive coding of visual object position ahead of moving objects revealed by time-resolved EEG decoding.
    Hogendoorn H; Burkitt AN
    Neuroimage; 2018 May; 171():55-61. PubMed ID: 29277651
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The haptic and the visual flash-lag effect and the role of flash characteristics.
    Drewing K; Hitzel E; Scocchia L
    PLoS One; 2018; 13(1):e0189291. PubMed ID: 29298309
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-definition transcranial direct-current stimulation of the right M1 further facilitates left M1 excitability during crossed facilitation.
    Cabibel V; Muthalib M; Teo WP; Perrey S
    J Neurophysiol; 2018 Apr; 119(4):1266-1272. PubMed ID: 29357451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tracking the Effect of Cathodal Transcranial Direct Current Stimulation on Cortical Excitability and Connectivity by Means of TMS-EEG.
    Varoli E; Pisoni A; Mattavelli GC; Vergallito A; Gallucci A; Mauro LD; Rosanova M; Bolognini N; Vallar G; Romero Lauro LJ
    Front Neurosci; 2018; 12():319. PubMed ID: 29867330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation.
    Jamil A; Batsikadze G; Kuo HI; Labruna L; Hasan A; Paulus W; Nitsche MA
    J Physiol; 2017 Feb; 595(4):1273-1288. PubMed ID: 27723104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characteristics of motor resonance predict the pattern of flash-lag effects for biological motion.
    Kessler K; Gordon L; Cessford K; Lages M
    PLoS One; 2010 Jan; 5(1):e8258. PubMed ID: 20062543
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The modulation of the flash-lag effect by voluntary attention.
    Namba J; Baldo VC
    Perception; 2004; 33(5):621-31. PubMed ID: 15250667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. No Effect of Anodal Transcranial Direct Current Stimulation (tDCS) Over hMT+ on Motion Perception Learning.
    Larcombe SJ; Kennard C; O'Shea J; Bridge H
    Front Neurosci; 2018; 12():1044. PubMed ID: 30705617
    [No Abstract]   [Full Text] [Related]  

  • 34. Neural latencies do not explain the auditory and audio-visual flash-lag effect.
    Arrighi R; Alais D; Burr D
    Vision Res; 2005 Nov; 45(23):2917-25. PubMed ID: 16115662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptive threshold hunting for the effects of transcranial direct current stimulation on primary motor cortex inhibition.
    Mooney RA; Cirillo J; Byblow WD
    Exp Brain Res; 2018 Jun; 236(6):1651-1663. PubMed ID: 29610948
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcranial Electrical Stimulation over Dorsolateral Prefrontal Cortex Modulates Processing of Social Cognitive and Affective Information.
    Conson M; Errico D; Mazzarella E; Giordano M; Grossi D; Trojano L
    PLoS One; 2015; 10(5):e0126448. PubMed ID: 25951227
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Neural Model of MST and MT Explains Perceived Object Motion during Self-Motion.
    Layton OW; Fajen BR
    J Neurosci; 2016 Aug; 36(31):8093-102. PubMed ID: 27488630
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct current stimulation over MT+/V5 modulates motion aftereffect in humans.
    Antal A; Varga ET; Nitsche MA; Chadaide Z; Paulus W; Kovács G; Vidnyánszky Z
    Neuroreport; 2004 Nov; 15(16):2491-4. PubMed ID: 15538181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of moving phosphene thresholds by transcranial direct current stimulation of V1 in human.
    Antal A; Kincses TZ; Nitsche MA; Paulus W
    Neuropsychologia; 2003; 41(13):1802-7. PubMed ID: 14527543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A psychophysical and computational analysis of the spatio-temporal mechanisms underlying the flash-lag effect.
    Cravo AM; Baldo MV
    Perception; 2008; 37(12):1850-66. PubMed ID: 19227376
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.