BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

626 related articles for article (PubMed ID: 35766512)

  • 21. Exploring the potential of genome editing CRISPR-Cas9 technology.
    Singh V; Braddick D; Dhar PK
    Gene; 2017 Jan; 599():1-18. PubMed ID: 27836667
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 23. Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells.
    Hindriksen S; Bramer AJ; Truong MA; Vromans MJM; Post JB; Verlaan-Klink I; Snippert HJ; Lens SMA; Hadders MA
    PLoS One; 2017; 12(6):e0179514. PubMed ID: 28640891
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae.
    Wang Y; Wang S; Chen W; Song L; Zhang Y; Shen Z; Yu F; Li M; Ji Q
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217854
    [No Abstract]   [Full Text] [Related]  

  • 25. Non-homologous end-joining-deficient filamentous fungal strains mitigate the impact of off-target mutations during the application of CRISPR/Cas9.
    Garrigues S; Peng M; Kun RS; de Vries RP
    mBio; 2023 Aug; 14(4):e0066823. PubMed ID: 37486124
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Construction of a series of episomal plasmids and their application in the development of an efficient CRISPR/Cas9 system in Pichia pastoris.
    Gu Y; Gao J; Cao M; Dong C; Lian J; Huang L; Cai J; Xu Z
    World J Microbiol Biotechnol; 2019 May; 35(6):79. PubMed ID: 31134410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A piggyBac-based toolkit for inducible genome editing in mammalian cells.
    Schertzer MD; Thulson E; Braceros KCA; Lee DM; Hinkle ER; Murphy RM; Kim SO; Vitucci ECM; Calabrese JM
    RNA; 2019 Aug; 25(8):1047-1058. PubMed ID: 31101683
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9.
    Zhu J; Song N; Sun S; Yang W; Zhao H; Song W; Lai J
    J Genet Genomics; 2016 Jan; 43(1):25-36. PubMed ID: 26842991
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Repurposing the Endogenous CRISPR-Cas9 System for High-Efficiency Genome Editing in
    Gu S; Zhang J; Li L; Zhong J
    ACS Synth Biol; 2022 Dec; 11(12):4031-4042. PubMed ID: 36414383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of translational selection on codon usage bias in the archaeon Methanococcus maripaludis.
    Emery LR; Sharp PM
    Biol Lett; 2011 Feb; 7(1):131-5. PubMed ID: 20810428
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs.
    Lee HJ; Kim HJ; Lee SJ
    Genome Res; 2020 May; 30(5):768-775. PubMed ID: 32327447
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simple, efficient and open-source CRISPR/Cas9 strategy for multi-site genome editing in Populus tremula × alba.
    Triozzi PM; Schmidt HW; Dervinis C; Kirst M; Conde D
    Tree Physiol; 2021 Nov; 41(11):2216-2227. PubMed ID: 33960379
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani.
    Zhang WW; Matlashewski G
    mBio; 2015 Jul; 6(4):e00861. PubMed ID: 26199327
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR-Cas9 Toolkit for Actinomycete Genome Editing.
    Tong Y; Robertsen HL; Blin K; Weber T; Lee SY
    Methods Mol Biol; 2018; 1671():163-184. PubMed ID: 29170959
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two CRISPR/Cas9 Systems Developed in Thermomyces dupontii and Characterization of Key Gene Functions in Thermolide Biosynthesis and Fungal Adaptation.
    Huang WP; Du YJ; Yang Y; He JN; Lei Q; Yang XY; Zhang KQ; Niu XM
    Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32769197
    [No Abstract]   [Full Text] [Related]  

  • 37. A Simplified Method for CRISPR-Cas9 Engineering of Bacillus subtilis.
    Sachla AJ; Alfonso AJ; Helmann JD
    Microbiol Spectr; 2021 Oct; 9(2):e0075421. PubMed ID: 34523974
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a CRISPR/Cas9
    Ma JX; He WY; Hua HM; Zhu Q; Zheng GS; Zimin AA; Wang WF; Lu YH
    ACS Synth Biol; 2023 Oct; 12(10):3114-3123. PubMed ID: 37722085
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development and Applications of CRISPR/Cas9-Based Genome Editing in
    Mu Y; Zhang C; Li T; Jin FJ; Sung YJ; Oh HM; Lee HG; Jin L
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361647
    [No Abstract]   [Full Text] [Related]  

  • 40. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans.
    Zhang Y; Feng J; Wang P; Xia J; Li X; Zou X
    Gene; 2019 Aug; 709():8-16. PubMed ID: 31132514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.