These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35766802)

  • 1. A transferable prediction model of molecular adsorption on metals based on adsorbate and substrate properties.
    Restuccia P; Ahmad EA; Harrison NM
    Phys Chem Chem Phys; 2022 Jul; 24(27):16545-16555. PubMed ID: 35766802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining the adsorption energies of small molecules with the intrinsic properties of adsorbates and substrates.
    Gao W; Chen Y; Li B; Liu SP; Liu X; Jiang Q
    Nat Commun; 2020 Mar; 11(1):1196. PubMed ID: 32139675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energies of Adsorbed Catalytic Intermediates on Transition Metal Surfaces: Calorimetric Measurements and Benchmarks for Theory.
    Campbell CT
    Acc Chem Res; 2019 Apr; 52(4):984-993. PubMed ID: 30879291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic and molecular adsorption on transition-metal carbide (111) surfaces from density-functional theory: a trend study of surface electronic factors.
    Vojvodic A; Ruberto C; Lundqvist BI
    J Phys Condens Matter; 2010 Sep; 22(37):375504. PubMed ID: 21403200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the origin of inter-adsorbate interactions on reactive surfaces for catalyst screening and design.
    Krishnamoorthy A; Yildiz B
    Phys Chem Chem Phys; 2015 Sep; 17(34):22227-34. PubMed ID: 26243171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unfolding adsorption on metal nanoparticles: Connecting stability with catalysis.
    Dean J; Taylor MG; Mpourmpakis G
    Sci Adv; 2019 Sep; 5(9):eaax5101. PubMed ID: 31548989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding energies of benzene on coinage metal surfaces: Equal stability on different metals.
    Maaß F; Jiang Y; Liu W; Tkatchenko A; Tegeder P
    J Chem Phys; 2018 Jun; 148(21):214703. PubMed ID: 29884059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational approaches to dissociative chemisorption on metals: towards chemical accuracy.
    Kroes GJ
    Phys Chem Chem Phys; 2021 Apr; 23(15):8962-9048. PubMed ID: 33885053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How molecular is the chemisorptive bond?
    van Santen RA; Tranca I
    Phys Chem Chem Phys; 2016 Aug; 18(31):20868-94. PubMed ID: 27357949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The roles of surface structure, oxygen defects, and hydration in the adsorption of CO(2) on low-index ZnGa(2)O(4) surfaces: a first-principles investigation.
    Jia C; Fan W; Cheng X; Zhao X; Sun H; Li P; Lin N
    Phys Chem Chem Phys; 2014 Apr; 16(16):7538-47. PubMed ID: 24632683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine Learning and Scaling Laws for Prediction of Accurate Adsorption Energy.
    Nayak S; Bhattacharjee S; Choi JH; Lee SC
    J Phys Chem A; 2020 Jan; 124(1):247-254. PubMed ID: 31809047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvation Free Energies and Adsorption Energies at the Metal/Water Interface from Hybrid Quantum-Mechanical/Molecular Mechanics Simulations.
    Clabaut P; Schweitzer B; Götz AW; Michel C; Steinmann SN
    J Chem Theory Comput; 2020 Oct; 16(10):6539-6549. PubMed ID: 32931268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Representations of Heterogeneous Carbon Reforming Catalysis Using Machine Learning.
    Li X; Chiong R; Hu Z; Cornforth D; Page AJ
    J Chem Theory Comput; 2019 Dec; 15(12):6882-6894. PubMed ID: 31503488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling adsorption and reactions of organic molecules at metal surfaces.
    Liu W; Tkatchenko A; Scheffler M
    Acc Chem Res; 2014 Nov; 47(11):3369-77. PubMed ID: 24915492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DockOnSurf: A Python Code for the High-Throughput Screening of Flexible Molecules Adsorbed on Surfaces.
    Martí C; Blanck S; Staub R; Loehlé S; Michel C; Steinmann SN
    J Chem Inf Model; 2021 Jul; 61(7):3386-3396. PubMed ID: 34160214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting adsorption on metals: simple yet effective descriptors for surface catalysis.
    Ras EJ; Louwerse MJ; Mittelmeijer-Hazeleger MC; Rothenberg G
    Phys Chem Chem Phys; 2013 Mar; 15(12):4436-43. PubMed ID: 23407857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing surface-adsorbate interactions through active particle dynamics.
    Greydanus B; Saleheen M; Wu H; Heyden A; Medlin JW; Schwartz DK
    J Colloid Interface Sci; 2022 May; 614():425-435. PubMed ID: 35108634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric Dipole Descriptor for Machine Learning Prediction of Catalyst Surface-Molecular Adsorbate Interactions.
    Wang X; Ye S; Hu W; Sharman E; Liu R; Liu Y; Luo Y; Jiang J
    J Am Chem Soc; 2020 Apr; 142(17):7737-7743. PubMed ID: 32297511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface phase diagram prediction from a minimal number of DFT calculations: redox-active adsorbates on zinc oxide.
    Hellström M; Behler J
    Phys Chem Chem Phys; 2017 Nov; 19(42):28731-28748. PubMed ID: 29044257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Communications: Exceptions to the d-band model of chemisorption on metal surfaces: The dominant role of repulsion between adsorbate states and metal d-states.
    Xin H; Linic S
    J Chem Phys; 2010 Jun; 132(22):221101. PubMed ID: 20550380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.