BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 35766898)

  • 1. Single-Site Iridium Picolinamide Catalyst Immobilized onto Silica for the Hydrogenation of CO
    Tensi L; Yakimov AV; Trotta C; Domestici C; De Jesus Silva J; Docherty SR; Zuccaccia C; Copéret C; Macchioni A
    Inorg Chem; 2022 Jul; 61(27):10575-10586. PubMed ID: 35766898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Highly Efficient Heterogenized Iridium Complex for the Catalytic Hydrogenation of Carbon Dioxide to Formate.
    Park K; Gunasekar GH; Prakash N; Jung KD; Yoon S
    ChemSusChem; 2015 Oct; 8(20):3410-3. PubMed ID: 26493515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A prolific catalyst for dehydrogenation of neat formic acid.
    Celaje JJ; Lu Z; Kedzie EA; Terrile NJ; Lo JN; Williams TJ
    Nat Commun; 2016 Apr; 7():11308. PubMed ID: 27076111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interconversion of CO2 and formic acid by bio-inspired Ir complexes with pendent bases.
    Fujita E; Muckerman JT; Himeda Y
    Biochim Biophys Acta; 2013; 1827(8-9):1031-8. PubMed ID: 23174332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iridium Complexes with Proton-Responsive Azole-Type Ligands as Effective Catalysts for CO
    Suna Y; Himeda Y; Fujita E; Muckerman JT; Ertem MZ
    ChemSusChem; 2017 Nov; 10(22):4535-4543. PubMed ID: 28985455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an Iridium-Based Catalyst for High-Pressure Evolution of Hydrogen from Formic Acid.
    Iguchi M; Himeda Y; Manaka Y; Kawanami H
    ChemSusChem; 2016 Oct; 9(19):2749-2753. PubMed ID: 27530918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-mimetic self-assembled computationally designed catalysts of Mo and W for hydrogenation of CO
    Shiekh BA; Kaur D; Kumar S
    Phys Chem Chem Phys; 2019 Oct; 21(38):21370-21380. PubMed ID: 31531468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen storage and delivery: the carbon dioxide - formic acid couple.
    Laurenczy G
    Chimia (Aarau); 2011; 65(9):663-6. PubMed ID: 22026175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation and deactivation of a robust immobilized Cp*Ir-transfer hydrogenation catalyst: a multielement in situ X-ray absorption spectroscopy study.
    Sherborne GJ; Chapman MR; Blacker AJ; Bourne RA; Chamberlain TW; Crossley BD; Lucas SJ; McGowan PC; Newton MA; Screen TE; Thompson P; Willans CE; Nguyen BN
    J Am Chem Soc; 2015 Apr; 137(12):4151-7. PubMed ID: 25768298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molybdenum-Incorporated Mesoporous Silica: Surface Engineering toward Enhanced Metal-Support Interactions and Efficient Hydrogenation.
    Chen T; Shi Z; Zhang G; Chan HC; Shu Y; Gao Q; Tang Y
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42475-42483. PubMed ID: 30456945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic Hydrogenation of CO
    Kanega R; Onishi N; Tanaka S; Kishimoto H; Himeda Y
    J Am Chem Soc; 2021 Jan; 143(3):1570-1576. PubMed ID: 33439639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction and separation system for CO
    Hu J; Ma W; Liu Q; Geng J; Wu Y; Hu X
    iScience; 2023 May; 26(5):106672. PubMed ID: 37216122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral-at-Metal: Iridium(III) Tetrazole Complexes With Proton-Responsive P-OH Groups for CO
    Ocansey E; Darkwa J; Makhubela BCE
    Front Chem; 2020; 8():591353. PubMed ID: 33304883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient CO
    Lo HK; Thiel I; Copéret C
    Chemistry; 2019 Jul; 25(40):9443-9446. PubMed ID: 31148292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous-flow hydrogenation of carbon dioxide to pure formic acid using an integrated scCO2 process with immobilized catalyst and base.
    Wesselbaum S; Hintermair U; Leitner W
    Angew Chem Int Ed Engl; 2012 Aug; 51(34):8585-8. PubMed ID: 22807319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO2 capture and conversion with a multifunctional polyethyleneimine-tethered iminophosphine iridium catalyst/adsorbent.
    McNamara ND; Hicks JC
    ChemSusChem; 2014 Apr; 7(4):1114-24. PubMed ID: 24591345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon dioxide hydrogenation to formic acid by using a heterogeneous gold catalyst.
    Preti D; Resta C; Squarcialupi S; Fachinetti G
    Angew Chem Int Ed Engl; 2011 Dec; 50(52):12551-4. PubMed ID: 22057843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formic acid dehydrogenation with bioinspired iridium complexes: a kinetic isotope effect study and mechanistic insight.
    Wang WH; Xu S; Manaka Y; Suna Y; Kambayashi H; Muckerman JT; Fujita E; Himeda Y
    ChemSusChem; 2014 Jul; 7(7):1976-83. PubMed ID: 24840600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ni Nanoparticles Supported on Cage-Type Mesoporous Silica for CO2 Hydrogenation with High CH4 Selectivity.
    Budi CS; Wu HC; Chen CS; Saikia D; Kao HM
    ChemSusChem; 2016 Sep; 9(17):2326-31. PubMed ID: 27531065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cp*Co(III) catalysts with proton-responsive ligands for carbon dioxide hydrogenation in aqueous media.
    Badiei YM; Wang WH; Hull JF; Szalda DJ; Muckerman JT; Himeda Y; Fujita E
    Inorg Chem; 2013 Nov; 52(21):12576-86. PubMed ID: 24131038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.