These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 3576698)

  • 41. Thin-section and freeze-fracture studies of crayfish stretch receptor synapses including the reciprocal inhibitory synapse.
    Hirosawa K; Tao-Cheng JH; Nakajima Y; Tisdale AD
    J Comp Neurol; 1981 Jul; 200(1):39-53. PubMed ID: 6265508
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The distribution of inhibitory and excitatory synapses on single, reconstructed jaw-opening motoneurons in the cat.
    Shigenaga Y; Moritani M; Oh SJ; Park KP; Paik SK; Bae JY; Kim HN; Ma SK; Park CW; Yoshida A; Ottersen OP; Bae YC
    Neuroscience; 2005; 133(2):507-18. PubMed ID: 15878646
    [TBL] [Abstract][Full Text] [Related]  

  • 43. GABAergic inhibition in the neostriatum.
    Wilson CJ
    Prog Brain Res; 2007; 160():91-110. PubMed ID: 17499110
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Differences in multiple forms of short-term plasticity between excitatory and inhibitory hippocampal neurons in culture.
    Kaplan MP; Wilcox KS; Dichter MA
    Synapse; 2003 Oct; 50(1):41-52. PubMed ID: 12872293
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ultrastructural identification of synaptic terminals from the axon of type 3 interneurons in the cat lateral geniculate nucleus.
    Montero VM
    J Comp Neurol; 1987 Oct; 264(2):268-83. PubMed ID: 3680632
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Morphology and synaptic connections of slowly adapting periodontal afferent terminals in the trigeminal subnuclei principalis and oralis of the cat.
    Bae YC; Nakagawa S; Yoshida A; Nagase Y; Takemura M; Shigenaga Y
    J Comp Neurol; 1994 Oct; 348(1):121-32. PubMed ID: 7814681
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Morphology of afferent and efferent synapses in hearing organ of the goldfish.
    Nakajima Y; Wang DW
    J Comp Neurol; 1974 Aug; 156(4):403-16. PubMed ID: 4414721
    [No Abstract]   [Full Text] [Related]  

  • 48. [Differentiation of neurons and synapses of mossy fibers in transplants of fascia dentata developing in the rat neocortex].
    Zhuravleva ZN
    Ontogenez; 1998; 29(2):85-91. PubMed ID: 9608953
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inhibitory long-term potentiation underlies auditory conditioning of goldfish escape behaviour.
    Oda Y; Kawasaki K; Morita M; Korn H; Matsui H
    Nature; 1998 Jul; 394(6689):182-5. PubMed ID: 9671301
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synaptic organization of amphibian sympathetic ganglia.
    Lascar G; Eugene D; Taxi J
    Microsc Res Tech; 1996 Oct; 35(2):157-78. PubMed ID: 8923450
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reduced GABAergic transmission and number of hippocampal perisomatic inhibitory synapses in juvenile mice deficient in the neural cell adhesion molecule L1.
    Saghatelyan AK; Nikonenko AG; Sun M; Rolf B; Putthoff P; Kutsche M; Bartsch U; Dityatev A; Schachner M
    Mol Cell Neurosci; 2004 May; 26(1):191-203. PubMed ID: 15121190
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Origin and function of spiral fibers projecting to the goldfish Mauthner cell.
    Scott JW; Zottoli SJ; Beatty NP; Korn H
    J Comp Neurol; 1994 Jan; 339(1):76-90. PubMed ID: 8106663
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Golgi-electron microscopic study of goldfish optic tectum. I. Description of afferents, cell types, and synapses.
    Meek J
    J Comp Neurol; 1981 Jun; 199(2):149-73. PubMed ID: 7251937
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reorganization of inhibitory synapses and increased PSD length of perforated excitatory synapses in hippocampal area CA1 of dystrophin-deficient mdx mice.
    Miranda R; Sébrié C; Degrouard J; Gillet B; Jaillard D; Laroche S; Vaillend C
    Cereb Cortex; 2009 Apr; 19(4):876-88. PubMed ID: 18794205
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [The ultrastructure of Mauthner's neurons in the surviving medulla oblongata of goldfish].
    Moshkov DA; Tiras NR; Pavlik LL; Mukhtasimova NF
    Morfologiia; 1996; 110(4):56-9. PubMed ID: 8983507
    [TBL] [Abstract][Full Text] [Related]  

  • 56. THE ULTRASTRUCTURE OF MAUTHNER CELL SYNAPSES AND NODES IN GOLDFISH BRAINS.
    ROBERTSON JD; BODENHEIMER TS; STAGE DE
    J Cell Biol; 1963 Oct; 19(1):159-99. PubMed ID: 14069792
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Distribution of calcium ions in the mixed synapses of Mauthner neurons in the goldfish in normal conditions, in exhaustion, and in conditions of adaptation to exhaustion.
    Moshkov DA; Bezgina EN; Pavlik LL; Mukhtasimova NF; Mavlyutov TA
    Neurosci Behav Physiol; 2005 Feb; 35(2):117-22. PubMed ID: 15779321
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [The reaction of the cytoskeleton and smooth endoplasmic reticulum of Mauthner's neurons in goldfish to partial denervation and prolonged sensory stimulation].
    Santalova IM; Moshkov DA
    Morfologiia; 1996; 110(6):72-5. PubMed ID: 9162417
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Some current concepts of synaptic organization.
    Jones DG
    Adv Anat Embryol Cell Biol; 1978; 55(4):3-69. PubMed ID: 217247
    [No Abstract]   [Full Text] [Related]  

  • 60. The structure of mixed synapses in Mauthner neurons during exposure to substances altering gap junction conductivity.
    Pavlik LL; Bezgina EN; Tiras NR; Mikheeva IB; Udal'tsov SN; Moshkov DA
    Neurosci Behav Physiol; 2005 Jun; 35(5):447-52. PubMed ID: 16033189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.