These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35767493)

  • 1. Multifingered Robot Hand Compliant Manipulation Based on Vision-Based Demonstration and Adaptive Force Control.
    Zeng C; Li S; Chen Z; Yang C; Sun F; Zhang J
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5452-5463. PubMed ID: 35767493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Dexterous Hand-Arm Teleoperation System Based on Hand Pose Estimation and Active Vision.
    Li S; Hendrich N; Liang H; Ruppel P; Zhang C; Zhang J
    IEEE Trans Cybern; 2024 Mar; 54(3):1417-1428. PubMed ID: 36179009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonprehensile Manipulation for Rapid Object Spinning via Multisensory Learning from Demonstration.
    Shin KJ; Jeon S
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive Interaction Control of Compliant Robots Using Impedance Learning.
    Sun T; Yang J
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Framework for Composite Layup Skill Learning and Generalizing Through Teleoperation.
    Si W; Wang N; Li Q; Yang C
    Front Neurorobot; 2022; 16():840240. PubMed ID: 35250529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Compliant Force Control Scheme for Industrial Robot Interactive Operation.
    Xue X; Huang H; Zuo L; Wang N
    Front Neurorobot; 2022; 16():865187. PubMed ID: 35401140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Learning-Based Hierarchical Control Scheme for an Exoskeleton Robot in Human-Robot Cooperative Manipulation.
    Deng M; Li Z; Kang Y; Chen CLP; Chu X
    IEEE Trans Cybern; 2020 Jan; 50(1):112-125. PubMed ID: 30183653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural network control of multifingered robot hands using visual feedback.
    Zhao Y; Cheah CC
    IEEE Trans Neural Netw; 2009 May; 20(5):758-67. PubMed ID: 19369155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Visual Data-Driven Spatiotemporal Deformations for Non-Rigid Object Grasping Using Robot Hands.
    Mateo CM; Gil P; Torres F
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27164102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On Alternative Uses of Structural Compliance for the Development of Adaptive Robot Grippers and Hands.
    Chang CM; Gerez L; Elangovan N; Zisimatos A; Liarokapis M
    Front Neurorobot; 2019; 13():91. PubMed ID: 31787889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive-Constrained Impedance Control for Human-Robot Co-Transportation.
    Yu X; Li B; He W; Feng Y; Cheng L; Silvestre C
    IEEE Trans Cybern; 2022 Dec; 52(12):13237-13249. PubMed ID: 34570713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Survey of Multifingered Robotic Manipulation: Biological Results, Structural Evolvements, and Learning Methods.
    Li Y; Wang P; Li R; Tao M; Liu Z; Qiao H
    Front Neurorobot; 2022; 16():843267. PubMed ID: 35574228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Markerless Eye-Hand Kinematic Calibration on the iCub Humanoid Robot.
    Vicente P; Jamone L; Bernardino A
    Front Robot AI; 2018; 5():46. PubMed ID: 33500931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Teleoperated Surgical Robot with Adaptive Interactive Control Architecture for Tissue Identification.
    Sheng Y; Cheng H; Wang Y; Zhao H; Ding H
    Bioengineering (Basel); 2023 Oct; 10(10):. PubMed ID: 37892887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Accessible, Open-Source Dexterity Test: Evaluating the Grasping and Dexterous Manipulation Capabilities of Humans and Robots.
    Elangovan N; Chang CM; Gao G; Liarokapis M
    Front Robot AI; 2022; 9():808154. PubMed ID: 35546901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compliant human-robot object transfer based on modular 3-axis force sensor for collaborative manufacturing.
    Hua H; Liao Z; Liu Y; Wu X; Zhao J; Song J
    ISA Trans; 2023 Oct; 141():482-495. PubMed ID: 37479596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired Rigid-Flexible Coupled Adaptive Compliant Motion Control of Robot Gecko for Space Stations.
    Pei X; Liu S; Wei A; Shi R; Dai Z
    Biomimetics (Basel); 2023 Sep; 8(5):. PubMed ID: 37754166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning compliant manipulation through kinesthetic and tactile human-robot interaction.
    Kronander K; Billard A
    IEEE Trans Haptics; 2014; 7(3):367-80. PubMed ID: 25248219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-Hand Motion Capture by Using Biological Inspiration for Bionic Bimanual Robot Teleoperation.
    Gao Q; Deng Z; Ju Z; Zhang T
    Cyborg Bionic Syst; 2023; 4():0052. PubMed ID: 37711160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards Haptic-Based Dual-Arm Manipulation.
    Turlapati SH; Campolo D
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.