These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 35767499)

  • 81. Unsupervised convolutional variational autoencoder deep embedding clustering for Raman spectra.
    Guo Y; Jin W; Wang W; Guo Z; He Y
    Anal Methods; 2022 Oct; 14(39):3898-3910. PubMed ID: 36169059
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A Mutual Bootstrapping Model for Automated Skin Lesion Segmentation and Classification.
    Xie Y; Zhang J; Xia Y; Shen C
    IEEE Trans Med Imaging; 2020 Jul; 39(7):2482-2493. PubMed ID: 32070946
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Deep Convolutional Clustering-Based Time Series Anomaly Detection.
    Chadha GS; Islam I; Schwung A; Ding SX
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450930
    [TBL] [Abstract][Full Text] [Related]  

  • 84. S-CUDA: Self-cleansing unsupervised domain adaptation for medical image segmentation.
    Liu L; Zhang Z; Li S; Ma K; Zheng Y
    Med Image Anal; 2021 Dec; 74():102214. PubMed ID: 34464837
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Assessment of Accuracy of an Artificial Intelligence Algorithm to Detect Melanoma in Images of Skin Lesions.
    Phillips M; Marsden H; Jaffe W; Matin RN; Wali GN; Greenhalgh J; McGrath E; James R; Ladoyanni E; Bewley A; Argenziano G; Palamaras I
    JAMA Netw Open; 2019 Oct; 2(10):e1913436. PubMed ID: 31617929
    [TBL] [Abstract][Full Text] [Related]  

  • 86. BIRADS features-oriented semi-supervised deep learning for breast ultrasound computer-aided diagnosis.
    Zhang E; Seiler S; Chen M; Lu W; Gu X
    Phys Med Biol; 2020 Jun; 65(12):125005. PubMed ID: 32155605
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Novel Approaches for Diagnosing Melanoma Skin Lesions Through Supervised and Deep Learning Algorithms.
    Premaladha J; Ravichandran KS
    J Med Syst; 2016 Apr; 40(4):96. PubMed ID: 26872778
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Abrupt skin lesion border cutoff measurement for malignancy detection in dermoscopy images.
    Kaya S; Bayraktar M; Kockara S; Mete M; Halic T; Field HE; Wong HK
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):367. PubMed ID: 27766942
    [TBL] [Abstract][Full Text] [Related]  

  • 89. A classification-based approach to semi-supervised clustering with pairwise constraints.
    Śmieja M; Struski Ł; Figueiredo MAT
    Neural Netw; 2020 Jul; 127():193-203. PubMed ID: 32387926
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Dermatologist-level classification of skin cancer with deep neural networks.
    Esteva A; Kuprel B; Novoa RA; Ko J; Swetter SM; Blau HM; Thrun S
    Nature; 2017 Feb; 542(7639):115-118. PubMed ID: 28117445
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Facial Expression Recognition Based on Weighted-Cluster Loss and Deep Transfer Learning Using a Highly Imbalanced Dataset.
    Ngo QT; Yoon S
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32380751
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Skin lesion image segmentation using Delaunay Triangulation for melanoma detection.
    Pennisi A; Bloisi DD; Nardi D; Giampetruzzi AR; Mondino C; Facchiano A
    Comput Med Imaging Graph; 2016 Sep; 52():89-103. PubMed ID: 27215953
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Supervised Saliency Map Driven Segmentation of Lesions in Dermoscopic Images.
    Jahanifar M; Zamani Tajeddin N; Mohammadzadeh Asl B; Gooya A
    IEEE J Biomed Health Inform; 2019 Mar; 23(2):509-518. PubMed ID: 29994323
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Reflectance confocal microscopy for diagnosing cutaneous melanoma in adults.
    Dinnes J; Deeks JJ; Saleh D; Chuchu N; Bayliss SE; Patel L; Davenport C; Takwoingi Y; Godfrey K; Matin RN; Patalay R; Williams HC;
    Cochrane Database Syst Rev; 2018 Dec; 12(12):CD013190. PubMed ID: 30521681
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Image Clustering via Deep Embedded Dimensionality Reduction and Probability-Based Triplet Loss.
    Yan Y; Hao H; Xu B; Zhao J; Shen F
    IEEE Trans Image Process; 2020 Apr; ():. PubMed ID: 32286977
    [TBL] [Abstract][Full Text] [Related]  

  • 96. A hierarchical three-step superpixels and deep learning framework for skin lesion classification.
    Afza F; Sharif M; Mittal M; Khan MA; Jude Hemanth D
    Methods; 2022 Jun; 202():88-102. PubMed ID: 33610692
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Association between different scale bars in dermoscopic images and diagnostic performance of a market-approved deep learning convolutional neural network for melanoma recognition.
    Winkler JK; Sies K; Fink C; Toberer F; Enk A; Abassi MS; Fuchs T; Haenssle HA
    Eur J Cancer; 2021 Mar; 145():146-154. PubMed ID: 33465706
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Artificial Intelligence and Its Effect on Dermatologists' Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study.
    Maron RC; Utikal JS; Hekler A; Hauschild A; Sattler E; Sondermann W; Haferkamp S; Schilling B; Heppt MV; Jansen P; Reinholz M; Franklin C; Schmitt L; Hartmann D; Krieghoff-Henning E; Schmitt M; Weichenthal M; von Kalle C; Fröhling S; Brinker TJ
    J Med Internet Res; 2020 Sep; 22(9):e18091. PubMed ID: 32915161
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Domain Adaptation Methods for Lab-to-Field Human Context Recognition.
    Alajaji A; Gerych W; Buquicchio L; Chandrasekaran K; Mansoor H; Agu E; Rundensteiner E
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991791
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Deep Generative Mixture Model for Robust Imbalance Classification.
    Wang X; Jing L; Lyu Y; Guo M; Wang J; Liu H; Yu J; Zeng T
    IEEE Trans Pattern Anal Mach Intell; 2023 Mar; 45(3):2897-2912. PubMed ID: 35648874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.