These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35767500)

  • 1. Reducing the Calibration Time in Somatosensory BCI by Using Tactile ERD.
    Yao L; Jiang N; Mrachacz-Kersting N; Zhu X; Farina D; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1870-1876. PubMed ID: 35767500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance Variation of a Somatosensory BCI Based on Imagined Sensation: A Large Population Study.
    Yao L; Jiang N; Mrachacz-Kersting N; Zhu X; Farina D; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2486-2493. PubMed ID: 35969546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding Covert Somatosensory Attention by a BCI System Calibrated With Tactile Sensation.
    Yao L; Sheng X; Mrachacz-Kersting N; Zhu X; Farina D; Jiang N
    IEEE Trans Biomed Eng; 2018 Aug; 65(8):1689-1695. PubMed ID: 29028186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A BCI System Based on Somatosensory Attentional Orientation.
    Yao L; Sheng X; Zhang D; Jiang N; Farina D; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):78-87. PubMed ID: 27244745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Motor Imagery Decoding by Calibration Model-Assisted With Tactile ERD.
    Zhong Y; Yao L; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4295-4305. PubMed ID: 37883287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Multi-Class BCI Based on Somatosensory Imagery.
    Yao L; Mrachacz-Kersting N; Sheng X; Zhu X; Farina D; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2018 Aug; 26(8):1508-1515. PubMed ID: 29994123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel calibration and task guidance framework for motor imagery BCI via a tendon vibration induced sensation with kinesthesia illusion.
    Yao L; Meng J; Sheng X; Zhang D; Zhu X
    J Neural Eng; 2015 Feb; 12(1):016005. PubMed ID: 25461477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tactile Sensation Assisted Motor Imagery Training for Enhanced BCI Performance: A Randomized Controlled Study.
    Zhong Y; Yao L; Wang J; Wang Y
    IEEE Trans Biomed Eng; 2023 Feb; 70(2):694-702. PubMed ID: 36001509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory Stimulation Training for BCI System Based on Somatosensory Attentional Orientation.
    Yao L; Sheng X; Mrachacz-Kersting N; Zhu X; Farina D; Jiang N
    IEEE Trans Biomed Eng; 2019 Mar; 66(3):640-646. PubMed ID: 29993483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-Subject Motor Imagery Decoding by Transfer Learning of Tactile ERD.
    Zhong Y; Yao L; Pan G; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():662-671. PubMed ID: 38271166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of Brain-Computer Interfacing Based on Tactile Selective Sensation and Motor Imagery.
    Yao L; Sheng X; Mrachacz-Kersting N; Zhu X; Farina D; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):60-68. PubMed ID: 29324403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Achieving a hybrid brain-computer interface with tactile selective attention and motor imagery.
    Ahn S; Ahn M; Cho H; Chan Jun S
    J Neural Eng; 2014 Dec; 11(6):066004. PubMed ID: 25307730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective sensation based brain-computer interface via mechanical vibrotactile stimulation.
    Yao L; Meng J; Zhang D; Sheng X; Zhu X
    PLoS One; 2013; 8(6):e64784. PubMed ID: 23762253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing performance of a motor imagery based brain-computer interface by incorporating electrical stimulation-induced SSSEP.
    Yi W; Qiu S; Wang K; Qi H; Zhao X; He F; Zhou P; Yang J; Ming D
    J Neural Eng; 2017 Apr; 14(2):026002. PubMed ID: 28004644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle-selective disinhibition of corticomotor representations using a motor imagery-based brain-computer interface.
    Takemi M; Maeda T; Masakado Y; Siebner HR; Ushiba J
    Neuroimage; 2018 Dec; 183():597-605. PubMed ID: 30172003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise estimation of human corticospinal excitability associated with the levels of motor imagery-related EEG desynchronization extracted by a locked-in amplifier algorithm.
    Takahashi K; Kato K; Mizuguchi N; Ushiba J
    J Neuroeng Rehabil; 2018 Nov; 15(1):93. PubMed ID: 30384845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical activation and BCI performance during brief tactile imagery: A comparative study with motor imagery.
    Sengupta P; Lakshminarayanan K
    Behav Brain Res; 2024 Feb; 459():114760. PubMed ID: 37979923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Somatosensory Event-Related Potential as an Electrophysiological Correlate of Endogenous Spatial Tactile Attention: Prospects for Electrotactile Brain-Computer Interface for Sensory Training.
    Novičić M; Savić AM
    Brain Sci; 2023 May; 13(5):. PubMed ID: 37239238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Event-Related Desynchronization Induced by Tactile Imagery: an EEG Study.
    Yakovlev L; Syrov N; Miroshnikov A; Lebedev M; Kaplan A
    eNeuro; 2023 Jun; 10(6):. PubMed ID: 37263791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.