These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35767581)

  • 21. Energetic cost of hovering flight in nectar-feeding bats (Phyllostomidae: Glossophaginae) and its scaling in moths, birds and bats.
    Voigt CC; Winter Y
    J Comp Physiol B; 1999 Feb; 169(1):38-48. PubMed ID: 10093905
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hummingbird foraging and the relation between bioenergetics and behaviour.
    Suarez RK; Gass CL
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Oct; 133(2):335-43. PubMed ID: 12208304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The physiological basis of bird flight.
    Butler PJ
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Large Brains, Small Guts: The Expensive Tissue Hypothesis Supported within Anurans.
    Liao WB; Lou SL; Zeng Y; Kotrschal A
    Am Nat; 2016 Dec; 188(6):693-700. PubMed ID: 27860511
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water body type and group size affect the flight initiation distance of European waterbirds.
    Mayer M; Natusch D; Frank S
    PLoS One; 2019; 14(7):e0219845. PubMed ID: 31310637
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Circulatory variables and the flight performance of birds.
    Bishop CM
    J Exp Biol; 2005 May; 208(Pt 9):1695-708. PubMed ID: 15855401
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolutionary divergence in brain size between migratory and resident birds.
    Sol D; Garcia N; Iwaniuk A; Davis K; Meade A; Boyle WA; Székely T
    PLoS One; 2010 Mar; 5(3):e9617. PubMed ID: 20224776
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trade-offs between stability and manoeuvrability in bird flight.
    Wissa A
    Nature; 2022 Mar; 603(7902):579-580. PubMed ID: 35273393
    [No Abstract]   [Full Text] [Related]  

  • 29. Flight costs in volant vertebrates: A phylogenetically-controlled meta-analysis of birds and bats.
    Guigueno MF; Shoji A; Elliott KH; Aris-Brosou S
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Sep; 235():193-201. PubMed ID: 31195122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds.
    Muijres FT; Johansson LC; Bowlin MS; Winter Y; Hedenström A
    PLoS One; 2012; 7(5):e37335. PubMed ID: 22624018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flight modes in migrating European bee-eaters: heart rate may indicate low metabolic rate during soaring and gliding.
    Sapir N; Wikelski M; McCue MD; Pinshow B; Nathan R
    PLoS One; 2010 Nov; 5(11):e13956. PubMed ID: 21085655
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Avian flight energetics.
    Rayner JM
    Annu Rev Physiol; 1982; 44():109-19. PubMed ID: 7041789
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flight hampers the evolution of weapons in birds.
    Menezes JCT; Palaoro AV
    Ecol Lett; 2022 Mar; 25(3):624-634. PubMed ID: 35199923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flight by night or day? Optimal daily timing of bird migration.
    Alerstam T
    J Theor Biol; 2009 Jun; 258(4):530-6. PubMed ID: 19459237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predator-prey interactions, flight initiation distance and brain size.
    Møller AP; Erritzøe J
    J Evol Biol; 2014 Jan; 27(1):34-42. PubMed ID: 25990564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parental provisioning drives brain size in birds.
    Griesser M; Drobniak SM; Graber SM; van Schaik CP
    Proc Natl Acad Sci U S A; 2023 Jan; 120(2):e2121467120. PubMed ID: 36608292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The energy savings-oxidative cost trade-off for migratory birds during endurance flight.
    McWilliams S; Pierce B; Wittenzellner A; Langlois L; Engel S; Speakman JR; Fatica O; DeMoranville K; Goymann W; Trost L; Bryla A; Dzialo M; Sadowska E; Bauchinger U
    Elife; 2020 Dec; 9():. PubMed ID: 33306947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The energetic cost of short flights in birds.
    Nudds RL; Bryant DM
    J Exp Biol; 2000 May; 203(Pt 10):1561-72. PubMed ID: 10769218
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of the cost of short flights in a nectarivorous and a non-nectarivorous bird.
    Hambly C; Pinshow B; Wiersma P; Verhulst S; Piertney SB; Harper EJ; Speakman JR
    J Exp Biol; 2004 Oct; 207(Pt 22):3959-68. PubMed ID: 15472026
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy Expenditure and Metabolic Changes of Free-Flying Migrating Northern Bald Ibis.
    Bairlein F; Fritz J; Scope A; Schwendenwein I; Stanclova G; van Dijk G; Meijer HA; Verhulst S; Dittami J
    PLoS One; 2015; 10(9):e0134433. PubMed ID: 26376193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.