These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 35768163)
1. Integrating a crop growth model and radiative transfer model to improve estimation of crop traits based on deep learning. Chen Q; Zheng B; Chen T; Chapman SC J Exp Bot; 2022 Nov; 73(19):6558-6574. PubMed ID: 35768163 [TBL] [Abstract][Full Text] [Related]
2. Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data. Estévez J; Salinero-Delgado M; Berger K; Pipia L; Rivera-Caicedo JP; Wocher M; Reyes-Muñoz P; Tagliabue G; Boschetti M; Verrelst J Remote Sens Environ; 2022 May; 273():112958. PubMed ID: 36081832 [TBL] [Abstract][Full Text] [Related]
3. Retrieval of Crop Variables from Proximal Multispectral UAV Image Data Using PROSAIL in Maize Canopy. Chakhvashvili E; Siegmann B; Muller O; Verrelst J; Bendig J; Kraska T; Rascher U Remote Sens (Basel); 2022 Mar; 14(5):1247. PubMed ID: 36082321 [TBL] [Abstract][Full Text] [Related]
4. Hybrid retrieval of crop traits from multi-temporal PRISMA hyperspectral imagery. Tagliabue G; Boschetti M; Bramati G; Candiani G; Colombo R; Nutini F; Pompilio L; Rivera-Caicedo JP; Rossi M; Rossini M; Verrelst J; Panigada C ISPRS J Photogramm Remote Sens; 2022 May; 187():362-377. PubMed ID: 36093126 [TBL] [Abstract][Full Text] [Related]
5. A model for phenotyping crop fractional vegetation cover using imagery from unmanned aerial vehicles. Wan L; Zhu J; Du X; Zhang J; Han X; Zhou W; Li X; Liu J; Liang F; He Y; Cen H J Exp Bot; 2021 Jun; 72(13):4691-4707. PubMed ID: 33963382 [TBL] [Abstract][Full Text] [Related]
6. Multi-Spectral Imaging from an Unmanned Aerial Vehicle Enables the Assessment of Seasonal Leaf Area Dynamics of Sorghum Breeding Lines. Potgieter AB; George-Jaeggli B; Chapman SC; Laws K; Suárez Cadavid LA; Wixted J; Watson J; Eldridge M; Jordan DR; Hammer GL Front Plant Sci; 2017; 8():1532. PubMed ID: 28951735 [TBL] [Abstract][Full Text] [Related]
7. Top-of-Atmosphere Retrieval of Multiple Crop Traits Using Variational Heteroscedastic Gaussian Processes within a Hybrid Workflow. Estévez J; Berger K; Vicent J; Rivera-Caicedo JP; Wocher M; Verrelst J Remote Sens (Basel); 2021 Apr; 13(8):1589. PubMed ID: 36082340 [TBL] [Abstract][Full Text] [Related]
8. Estimation of leaf traits from reflectance measurements: comparison between methods based on vegetation indices and several versions of the PROSPECT model. Jiang J; Comar A; Burger P; Bancal P; Weiss M; Baret F Plant Methods; 2018; 14():23. PubMed ID: 29581726 [TBL] [Abstract][Full Text] [Related]
9. [Estimating canopy water content in wheat based on new vegetation water index]. Cheng XJ; Yang GJ; Xu XG; Chen TE; Li ZH; Feng HK; Wang D Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Dec; 34(12):3391-6. PubMed ID: 25881445 [TBL] [Abstract][Full Text] [Related]
10. A robust spectral angle index for remotely assessing soybean canopy chlorophyll content in different growing stages. Yue J; Feng H; Tian Q; Zhou C Plant Methods; 2020; 16():104. PubMed ID: 32765637 [TBL] [Abstract][Full Text] [Related]
11. A Generic Model to Estimate Wheat LAI over Growing Season Regardless of the Soil-Type Background. Chen Q; Zheng B; Chenu K; Chapman SC Plant Phenomics; 2023; 5():0055. PubMed ID: 37234427 [TBL] [Abstract][Full Text] [Related]
12. [Retrieval of leaf water content of winter wheat from canopy hyperspectral data using partial least square regression]. Wang YY; Li GC; Zhang LJ; Fan JL Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Apr; 30(4):1070-4. PubMed ID: 20545164 [TBL] [Abstract][Full Text] [Related]
13. Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible and Near-Infrared Sensors. Zhang J; Han W; Huang L; Zhang Z; Ma Y; Hu Y Sensors (Basel); 2016 Mar; 16(4):437. PubMed ID: 27023550 [TBL] [Abstract][Full Text] [Related]
14. Prediction of vertical distribution of SPAD values within maize canopy based on unmanned aerial vehicles multispectral imagery. Chen B; Huang G; Lu X; Gu S; Wen W; Wang G; Chang W; Guo X; Zhao C Front Plant Sci; 2023; 14():1253536. PubMed ID: 38192698 [TBL] [Abstract][Full Text] [Related]
15. Retrieval of Winter Wheat Leaf Area Index from Chinese GF-1 Satellite Data Using the PROSAIL Model. Li H; Liu G; Liu Q; Chen Z; Huang C Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642395 [TBL] [Abstract][Full Text] [Related]
16. Unique contributions of chlorophyll and nitrogen to predict crop photosynthetic capacity from leaf spectroscopy. Wang S; Guan K; Wang Z; Ainsworth EA; Zheng T; Townsend PA; Li K; Moller C; Wu G; Jiang C J Exp Bot; 2021 Feb; 72(2):341-354. PubMed ID: 32937655 [TBL] [Abstract][Full Text] [Related]
18. Estimation of Nitrogen Nutrition Status in Winter Wheat From Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery. Lu N; Wang W; Zhang Q; Li D; Yao X; Tian Y; Zhu Y; Cao W; Baret F; Liu S; Cheng T Front Plant Sci; 2019; 10():1601. PubMed ID: 31921250 [TBL] [Abstract][Full Text] [Related]
19. [Estimation of canopy chlorophyll content using hyperspectral data]. Dong JJ; Wang L; Niu Z Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Nov; 29(11):3003-6. PubMed ID: 20101973 [TBL] [Abstract][Full Text] [Related]
20. [Winter wheat GPC estimation based on leaf and canopy chlorophyll parameters]. Song XY; Wang JH; Yang GJ; Cui B; Chang H Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jul; 34(7):1917-21. PubMed ID: 25269308 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]