These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35768500)

  • 1. Decomposing biophotovoltaic current density profiles using the Hilbert-Huang transform reveals influences of circadian clock on cyanobacteria exoelectrogenesis.
    Okedi T; Yunus K; Fisher A
    Sci Rep; 2022 Jun; 12(1):10962. PubMed ID: 35768500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LdpA: a component of the circadian clock senses redox state of the cell.
    Ivleva NB; Bramlett MR; Lindahl PA; Golden SS
    EMBO J; 2005 Mar; 24(6):1202-10. PubMed ID: 15775978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ldpA encodes an iron-sulfur protein involved in light-dependent modulation of the circadian period in the cyanobacterium Synechococcus elongatus PCC 7942.
    Katayama M; Kondo T; Xiong J; Golden SS
    J Bacteriol; 2003 Feb; 185(4):1415-22. PubMed ID: 12562813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The circadian clock ensures successful DNA replication in cyanobacteria.
    Liao Y; Rust MJ
    Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33972427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth.
    Diamond S; Jun D; Rubin BE; Golden SS
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):E1916-25. PubMed ID: 25825710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The endogenous redox rhythm is controlled by a central circadian oscillator in cyanobacterium Synechococcus elongatus PCC7942.
    Tanaka K; Ishikawa M; Kaneko M; Kamiya K; Kato S; Nakanishi S
    Photosynth Res; 2019 Nov; 142(2):203-210. PubMed ID: 31485868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency doubling in the cyanobacterial circadian clock.
    Martins BM; Das AK; Antunes L; Locke JC
    Mol Syst Biol; 2016 Dec; 12(12):896. PubMed ID: 28007935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Mechanistic Model of the Regulation of Division Timing by the Circadian Clock in Cyanobacteria.
    Ho PY; Martins BMC; Amir A
    Biophys J; 2020 Jun; 118(12):2905-2913. PubMed ID: 32497517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual KaiC-based oscillations constitute the circadian system of cyanobacteria.
    Kitayama Y; Nishiwaki T; Terauchi K; Kondo T
    Genes Dev; 2008 Jun; 22(11):1513-21. PubMed ID: 18477603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity of KaiC-based timing systems in marine Cyanobacteria.
    Axmann IM; Hertel S; Wiegard A; Dörrich AK; Wilde A
    Mar Genomics; 2014 Apr; 14():3-16. PubMed ID: 24388874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhythms in energy storage control the ability of the cyanobacterial circadian clock to reset.
    Pattanayak GK; Phong C; Rust MJ
    Curr Biol; 2014 Aug; 24(16):1934-8. PubMed ID: 25127221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the cyanobacterial circadian clock by electrochemically controlled extracellular electron transfer.
    Lu Y; Nishio K; Matsuda S; Toshima Y; Ito H; Konno T; Ishihara K; Kato S; Hashimoto K; Nakanishi S
    Angew Chem Int Ed Engl; 2014 Feb; 53(8):2208-11. PubMed ID: 24573996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Kai-Protein Clock-Keeping Track of Cyanobacteria's Daily Life.
    Snijder J; Axmann IM
    Subcell Biochem; 2019; 93():359-391. PubMed ID: 31939158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A circadian timing mechanism in the cyanobacteria.
    Williams SB
    Adv Microb Physiol; 2007; 52():229-96. PubMed ID: 17027373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of glycogen metabolism in circadian control of UV resistance in cyanobacteria.
    Kawasaki K; Iwasaki H
    PLoS Genet; 2020 Nov; 16(11):e1009230. PubMed ID: 33253146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteins found in a CikA interaction assay link the circadian clock, metabolism, and cell division in Synechococcus elongatus.
    Mackey SR; Choi JS; Kitayama Y; Iwasaki H; Dong G; Golden SS
    J Bacteriol; 2008 May; 190(10):3738-46. PubMed ID: 18344369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tapping into cyanobacteria electron transfer for higher exoelectrogenic activity by imposing iron limited growth.
    Gonzalez-Aravena AC; Yunus K; Zhang L; Norling B; Fisher AC
    RSC Adv; 2018 May; 8(36):20263-20274. PubMed ID: 35541668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the circadian period of cyanobacteria up to 6.6 days by the single amino acid substitutions in KaiC.
    Ito-Miwa K; Furuike Y; Akiyama S; Kondo T
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20926-20931. PubMed ID: 32747571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel allele of kaiA shortens the circadian period and strengthens interaction of oscillator components in the cyanobacterium Synechococcus elongatus PCC 7942.
    Chen Y; Kim YI; Mackey SR; Holtman CK; Liwang A; Golden SS
    J Bacteriol; 2009 Jul; 191(13):4392-400. PubMed ID: 19395479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian Rhythms in Cyanobacteria.
    Cohen SE; Golden SS
    Microbiol Mol Biol Rev; 2015 Dec; 79(4):373-85. PubMed ID: 26335718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.