BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35768622)

  • 1. An integrated assessment of land use impact, riparian vegetation and lithologic variation on streambank stability in a peri-urban watershed (Nigeria).
    Okeke CAU; Uno J; Academe S; Emenike PC; Abam TKS; Omole DO
    Sci Rep; 2022 Jun; 12(1):10989. PubMed ID: 35768622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Streambanks: A net source of sediment and phosphorus to streams and rivers.
    Fox GA; Purvis RA; Penn CJ
    J Environ Manage; 2016 Oct; 181():602-614. PubMed ID: 27429360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding stream bank erosion and deposition in Iowa, USA: A seven year study along streams in different regions with different riparian land-uses.
    Zaimes GΝ; Tamparopoulos AE; Tufekcioglu M; Schultz RC
    J Environ Manage; 2021 Jun; 287():112352. PubMed ID: 33743416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of river bank erosion by RTK GPS monitoring: case studies along the Ningxia-Inner Mongolia reaches of the Yellow River, China.
    Zhang Z; Shu A; Zhang K; Liu H; Wang J; Dai J
    Environ Monit Assess; 2019 Feb; 191(3):140. PubMed ID: 30734102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sediment sources of Yan'gou watershed in the Loess Hilly region China under a certain rainstorm event.
    Xu XX; Ju TJ; Zheng SQ
    Springerplus; 2013; 2(Suppl 1):S2. PubMed ID: 24711979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Riparian erosion vulnerability model based on environmental features.
    Botero-Acosta A; Chu ML; Guzman JA; Starks PJ; Moriasi DN
    J Environ Manage; 2017 Dec; 203(Pt 1):592-602. PubMed ID: 28318825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorus load to surface water from bank erosion in a Danish lowland river basin.
    Kronvang B; Audet J; Baattrup-Pedersen A; Jensen HS; Larsen SE
    J Environ Qual; 2012; 41(2):304-13. PubMed ID: 22370392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of forested floodplain soil properties on phosphorous concentrations in two Chesapeake Bay sub-watersheds, Virginia, USA.
    Odhiambo BK; Ricker MC; Le Blanc LM; Moxey KA
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16056-66. PubMed ID: 27146543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stream Corridor Soil Phosphorus Availability in a Forested-Agricultural Mixed Land Use Watershed.
    Perillo VL; Ross DS; Wemple BC; Balling C; Lemieux LE
    J Environ Qual; 2019 Jan; 48(1):185-192. PubMed ID: 30640355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Riparian Forest Cover Modulates Phosphorus Storage and Nitrogen Cycling in Agricultural Stream Sediments.
    Kreiling RM; Bartsch LA; Perner PM; Hlavacek EJ; Christensen VG
    Environ Manage; 2021 Aug; 68(2):279-293. PubMed ID: 34105016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying pollutant loading from channel sources: Watershed-scale application of the River Erosion Model.
    Lammers RW; Bledsoe BP
    J Environ Manage; 2019 Mar; 234():104-114. PubMed ID: 30616182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method to quantify and value floodplain sediment and nutrient retention ecosystem services.
    Hopkins KG; Noe GB; Franco F; Pindilli EJ; Gordon S; Metes MJ; Claggett PR; Gellis AC; Hupp CR; Hogan DM
    J Environ Manage; 2018 Aug; 220():65-76. PubMed ID: 29758400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Riparian erosion from cattle traffic may contribute up to 50% of the modelled streambank sediment supply in a large Great Barrier Reef river basin.
    Packett R
    Mar Pollut Bull; 2020 Sep; 158():111388. PubMed ID: 32753175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Watershed health assessment using the coupled integrated multistatistic analyses and PSIR framework.
    Duan T; Feng J; Chang X; Li Y
    Sci Total Environ; 2022 Nov; 847():157523. PubMed ID: 35905965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of sub-watershed landscape patterns at the upper reaches of Minjiang River on soil erosion].
    Yang M; Li XZ; Yang ZP; Hu YM; Wen QC
    Ying Yong Sheng Tai Xue Bao; 2007 Nov; 18(11):2512-9. PubMed ID: 18260457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil erosion and sediment fluxes analysis: a watershed study of the Ni Reservoir, Spotsylvania County, VA, USA.
    Pope IC; Odhiambo BK
    Environ Monit Assess; 2014 Mar; 186(3):1719-33. PubMed ID: 24141485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative assessment of sediment delivery and retention in four watersheds in the Godavari River Basin, India, using InVEST model - an aquatic ecosystem services perspective.
    Kantharajan G; Govindakrishnan PM; Singh RK; Natalia EC; Jones SK; Singh A; Mohindra V; Kumar NKRK; Rana JC; Jena JK; Lal KK
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):30371-30384. PubMed ID: 36434447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reservoir Sedimentation and Upstream Sediment Sources: Perspectives and Future Research Needs on Streambank and Gully Erosion.
    Fox GA; Sheshukov A; Cruse R; Kolar RL; Guertault L; Gesch KR; Dutnell RC
    Environ Manage; 2016 May; 57(5):945-55. PubMed ID: 26885658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus Characterization and Contribution from Eroding Streambank Soils of Vermont's Lake Champlain Basin.
    Ishee ER; Ross DS; Garvey KM; Bourgault RR; Ford CR
    J Environ Qual; 2015 Nov; 44(6):1745-53. PubMed ID: 26641326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variation in root density along stream banks.
    Wynn TM; Mostaghimi S; Burger JA; Harpold AA; Henderson MB; Henry LA
    J Environ Qual; 2004; 33(6):2030-9. PubMed ID: 15537925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.