BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35769344)

  • 21. Seismic Data Augmentation Based on Conditional Generative Adversarial Networks.
    Li Y; Ku B; Zhang S; Ahn JK; Ko H
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33266072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Parallel Connected Generative Adversarial Network with Quadratic Operation for SAR Image Generation and Application for Classification.
    He C; Xiong D; Zhang Q; Liao M
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791500
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Harnessing the power of diffusion models for plant disease image augmentation.
    Muhammad A; Salman Z; Lee K; Han D
    Front Plant Sci; 2023; 14():1280496. PubMed ID: 38023884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Novel COVID-19 Detection Model Based on DCGAN and Deep Transfer Learning.
    Puttagunta M; Subban R; C NKB
    Procedia Comput Sci; 2022; 204():65-72. PubMed ID: 36120410
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intraclass Image Augmentation for Defect Detection Using Generative Adversarial Neural Networks.
    Sampath V; Maurtua I; Aguilar Martín JJ; Iriondo A; Lluvia I; Aizpurua G
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850460
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generating bulk RNA-Seq gene expression data based on generative deep learning models and utilizing it for data augmentation.
    Wang Y; Chen Q; Shao H; Zhang R; Shen H
    Comput Biol Med; 2024 Feb; 169():107828. PubMed ID: 38101117
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MSFF-CDCGAN: A novel method to predict RNA secondary structure based on Generative Adversarial Network.
    Yuan S; Gong Y; Wang G; Zhang B; Liu Y; Zhang H
    Methods; 2022 Aug; 204():368-375. PubMed ID: 35490852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generative Adversarial Networks in Medical Image augmentation: A review.
    Chen Y; Yang XH; Wei Z; Heidari AA; Zheng N; Li Z; Chen H; Hu H; Zhou Q; Guan Q
    Comput Biol Med; 2022 May; 144():105382. PubMed ID: 35276550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploiting Images for Video Recognition: Heterogeneous Feature Augmentation via Symmetric Adversarial Learning.
    Yu F; Wu X; Chen J; Duan L
    IEEE Trans Image Process; 2019 Nov; 28(11):5308-5321. PubMed ID: 31144637
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks.
    Ahmad B; Sun J; You Q; Palade V; Mao Z
    Biomedicines; 2022 Jan; 10(2):. PubMed ID: 35203433
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of Data Augmentation Strategies Toward Performance Improvement of Abnormality Classification in Chest Radiographs.
    Ganesan P; Rajaraman S; Long R; Ghoraani B; Antani S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():841-844. PubMed ID: 31946026
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Novel Computer-Aided Detection/Diagnosis System for Detection and Classification of Polyps in Colonoscopy.
    Tang CP; Chang HY; Wang WC; Hu WX
    Diagnostics (Basel); 2023 Jan; 13(2):. PubMed ID: 36672980
    [TBL] [Abstract][Full Text] [Related]  

  • 33. BrainGAN: Brain MRI Image Generation and Classification Framework Using GAN Architectures and CNN Models.
    Alrashedy HHN; Almansour AF; Ibrahim DM; Hammoudeh MAA
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684918
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep Learning Based One-Class Detection System for Fake Faces Generated by GAN Network.
    Li S; Dutta V; He X; Matsumaru T
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Performance improvement of mediastinal lymph node severity detection using GAN and Inception network.
    Tekchandani H; Verma S; Londhe N
    Comput Methods Programs Biomed; 2020 Oct; 194():105478. PubMed ID: 32447144
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generative Adversarial Networks to Improve Fetal Brain Fine-Grained Plane Classification.
    Montero A; Bonet-Carne E; Burgos-Artizzu XP
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-Resource Adversarial Domain Adaptation for Cross-Modality Nucleus Detection.
    Xing F; Cornish TC
    Med Image Comput Comput Assist Interv; 2022 Sep; 13437():639-649. PubMed ID: 36383499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Data augmentation for enhancing EEG-based emotion recognition with deep generative models.
    Luo Y; Zhu LZ; Wan ZY; Lu BL
    J Neural Eng; 2020 Oct; 17(5):056021. PubMed ID: 33052888
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks.
    Sandfort V; Yan K; Pickhardt PJ; Summers RM
    Sci Rep; 2019 Nov; 9(1):16884. PubMed ID: 31729403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robust Data Augmentation Generative Adversarial Network for Object Detection.
    Lee H; Kang S; Chung K
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.