These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 35770691)
1. A double-step emulsification device for direct generation of double emulsions. Lai YK; Opalski AS; Garstecki P; Derzsi L; Guzowski J Soft Matter; 2022 Aug; 18(33):6157-6166. PubMed ID: 35770691 [TBL] [Abstract][Full Text] [Related]
2. Split or slip - passive generation of monodisperse double emulsions with cores of varying viscosity in microfluidic tandem step emulsification system. Opalski AS; Makuch K; Derzsi L; Garstecki P RSC Adv; 2020 Jun; 10(39):23058-23065. PubMed ID: 35520343 [TBL] [Abstract][Full Text] [Related]
3. Understanding the microfluidic generation of double emulsion droplets with alginate shell. Huang L; Wu K; Cai S; Yu H; Liu D; Yuan W; Chen X; Ji H Colloids Surf B Biointerfaces; 2023 Feb; 222():113114. PubMed ID: 36577345 [TBL] [Abstract][Full Text] [Related]
4. Grooved step emulsification systems optimize the throughput of passive generation of monodisperse emulsions. Opalski AS; Makuch K; Lai YK; Derzsi L; Garstecki P Lab Chip; 2019 Mar; 19(7):1183-1192. PubMed ID: 30843018 [TBL] [Abstract][Full Text] [Related]
5. Tandem emulsification for high-throughput production of double emulsions. Eggersdorfer ML; Zheng W; Nawar S; Mercandetti C; Ofner A; Leibacher I; Koehler S; Weitz DA Lab Chip; 2017 Feb; 17(5):936-942. PubMed ID: 28197593 [TBL] [Abstract][Full Text] [Related]
6. Systematic characterization of effect of flow rates and buffer compositions on double emulsion droplet volumes and stability. Calhoun SGK; Brower KK; Suja VC; Kim G; Wang N; McCully AL; Kusumaatmaja H; Fuller GG; Fordyce PM Lab Chip; 2022 Jun; 22(12):2315-2330. PubMed ID: 35593127 [TBL] [Abstract][Full Text] [Related]
7. Tailored Double Emulsions Made Simple. Wang J; Hahn S; Amstad E; Vogel N Adv Mater; 2022 Feb; 34(5):e2107338. PubMed ID: 34706112 [TBL] [Abstract][Full Text] [Related]
8. Prediction and control of drop formation modes in microfluidic generation of double emulsions by single-step emulsification. Nabavi SA; Vladisavljević GT; Bandulasena MV; Arjmandi-Tash O; Manović V J Colloid Interface Sci; 2017 Nov; 505():315-324. PubMed ID: 28601740 [TBL] [Abstract][Full Text] [Related]
9. Monodisperse double emulsions generated from a microcapillary device. Utada AS; Lorenceau E; Link DR; Kaplan PD; Stone HA; Weitz DA Science; 2005 Apr; 308(5721):537-41. PubMed ID: 15845850 [TBL] [Abstract][Full Text] [Related]
10. Sequential Coalescence Enabled Two-Step Microreactions in Triple-Core Double-Emulsion Droplets Triggered by an Electric Field. Jia Y; Ren Y; Hou L; Liu W; Deng X; Jiang H Small; 2017 Dec; 13(46):. PubMed ID: 29044912 [TBL] [Abstract][Full Text] [Related]
11. [Rapid generation of double-layer emulsion droplets based on microfluidic chip]. Bai L; Yuan H; Tu R; Wang Q; Hua E Sheng Wu Gong Cheng Xue Bao; 2020 Jul; 36(7):1405-1413. PubMed ID: 32748598 [TBL] [Abstract][Full Text] [Related]
12. Double emulsions with ultrathin shell by microfluidic step-emulsification. Ge X; Rubinstein BY; He Y; Bruce FNO; Li L; Leshansky AM; Li Z Lab Chip; 2021 Apr; 21(8):1613-1622. PubMed ID: 33683225 [TBL] [Abstract][Full Text] [Related]
13. Novel glass capillary microfluidic devices for the flexible and simple production of multi-cored double emulsions. Leister N; Vladisavljević GT; Karbstein HP J Colloid Interface Sci; 2022 Apr; 611():451-461. PubMed ID: 34968964 [TBL] [Abstract][Full Text] [Related]
14. A passive microfluidic system based on step emulsification allows the generation of libraries of nanoliter-sized droplets from microliter droplets of varying and known concentrations of a sample. Postek W; Kaminski TS; Garstecki P Lab Chip; 2017 Mar; 17(7):1323-1331. PubMed ID: 28271118 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic Coupling of Step Emulsification and Deterministic Lateral Displacement for Producing Satellite-Free Droplets and Particles. Ji G; Kanno Y; Nisisako T Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985029 [TBL] [Abstract][Full Text] [Related]
16. Emulsion droplet formation in coflowing liquid streams. Chen Y; Wu L; Zhang C Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013002. PubMed ID: 23410421 [TBL] [Abstract][Full Text] [Related]
17. Monodisperse alginate microcapsules with oil core generated from a microfluidic device. Ren PW; Ju XJ; Xie R; Chu LY J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224 [TBL] [Abstract][Full Text] [Related]
18. Spontaneous Formation of Double Emulsions at Particle-Laden Interfaces. Bazazi P; Hejazi SH J Colloid Interface Sci; 2021 Apr; 587():510-521. PubMed ID: 33406465 [TBL] [Abstract][Full Text] [Related]
19. Gas-assisted microfluidic step-emulsification for generating micron- and submicron-sized droplets. Huang B; Ge X; Rubinstein BY; Chen X; Wang L; Xie H; Leshansky AM; Li Z Microsyst Nanoeng; 2023; 9():86. PubMed ID: 37435566 [TBL] [Abstract][Full Text] [Related]
20. Versatile Tool for Droplet Generation in Standard Reaction Tubes by Centrifugal Step Emulsification. Schulz M; Probst S; Calabrese S; R Homann A; Borst N; Weiss M; von Stetten F; Zengerle R; Paust N Molecules; 2020 Apr; 25(8):. PubMed ID: 32326221 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]