BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35770698)

  • 1. Oleic acid/oleylamine ligand pair: a versatile combination in the synthesis of colloidal nanoparticles.
    Mourdikoudis S; Menelaou M; Fiuza-Maneiro N; Zheng G; Wei S; Pérez-Juste J; Polavarapu L; Sofer Z
    Nanoscale Horiz; 2022 Aug; 7(9):941-1015. PubMed ID: 35770698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the interaction of surfactants oleic acid and oleylamine with iron oxide nanoparticles through molecular mechanics modeling.
    Harris RA; Shumbula PM; van der Walt H
    Langmuir; 2015 Apr; 31(13):3934-43. PubMed ID: 25768034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered Inorganic/Organic-Core/Shell Magnetic FexOy Nanoparticles with Oleic Acid and/or Oleylamine As Capping Agents.
    Harris RA; van der Walt H; Shumbula PM
    Curr Pharm Des; 2015; 21(37):5369-88. PubMed ID: 26377658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-mediated shape control in the solvothermal synthesis of titanium dioxide nanospheres, nanorods and nanowires.
    Gonzalo-Juan I; McBride JR; Dickerson JH
    Nanoscale; 2011 Sep; 3(9):3799-804. PubMed ID: 21845260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of colloidal uranium-dioxide nanocrystals.
    Wu H; Yang Y; Cao YC
    J Am Chem Soc; 2006 Dec; 128(51):16522-3. PubMed ID: 17177400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology and structure controlled synthesis of ruthenium nanoparticles in oleylamine.
    Ye F; Liu H; Yang J; Cao H; Yang J
    Dalton Trans; 2013 Sep; 42(34):12309-16. PubMed ID: 23851416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of silver nanoparticles by oleylamine-oleic acid reduction and its use in making nanocable by coaxial electrospinning.
    Cinar S; Gündül G; Mavis B; Colak U
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3669-79. PubMed ID: 21776752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant-driven optimization of iron-based nanoparticle synthesis: a study on magnetic hyperthermia and endothelial cell uptake.
    Riahi K; Dirba I; Ablets Y; Filatova A; Sultana SN; Adabifiroozjaei E; Molina-Luna L; Nuber UA; Gutfleisch O
    Nanoscale Adv; 2023 Oct; 5(21):5859-5869. PubMed ID: 37881718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles.
    Heuer-Jungemann A; Feliu N; Bakaimi I; Hamaly M; Alkilany A; Chakraborty I; Masood A; Casula MF; Kostopoulou A; Oh E; Susumu K; Stewart MH; Medintz IL; Stratakis E; Parak WJ; Kanaras AG
    Chem Rev; 2019 Apr; 119(8):4819-4880. PubMed ID: 30920815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the amine and phosphine groups in oleylamine and trioctylphosphine in the synthesis of copper chalcogenide nanoparticles.
    Mbewana-Ntshanka NG; Moloto MJ; Mubiayi PK
    Heliyon; 2020 Nov; 6(11):e05130. PubMed ID: 33241131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amine-Free Synthetic Route: An Emerging Approach to Making High-Quality Perovskite Nanocrystals for Futuristic Applications.
    Akhil S; Biswas S; Palabathuni M; Singh R; Mishra N
    J Phys Chem Lett; 2022 Oct; 13(40):9480-9493. PubMed ID: 36200748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative measurement of ligand exchange on iron oxides via radiolabeled oleic acid.
    Davis K; Qi B; Witmer M; Kitchens CL; Powell BA; Mefford OT
    Langmuir; 2014 Sep; 30(36):10918-25. PubMed ID: 25137089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study on gold nanoparticle synthesis using oleylamine as both reducing agent and protecting ligand.
    Liu X; Atwater M; Wang J; Dai Q; Zou J; Brennan JP; Huo Q
    J Nanosci Nanotechnol; 2007 Sep; 7(9):3126-33. PubMed ID: 18019138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape-controlled synthesis of highly crystalline titania nanocrystals.
    Dinh CT; Nguyen TD; Kleitz F; Do TO
    ACS Nano; 2009 Nov; 3(11):3737-43. PubMed ID: 19807108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manganese Oxide Nanoparticle Synthesis by Thermal Decomposition of Manganese(II) Acetylacetonate.
    Martinez de la Torre C; Bennewitz MF
    J Vis Exp; 2020 Jun; (160):. PubMed ID: 32628168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of monodisperse iron oxide and iron/iron oxide core/shell nanoparticles via iron-oleylamine complex.
    Yu S; Chow GM
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2135-40. PubMed ID: 17025138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase- and size-controllable synthesis of hexagonal upconversion rare-earth fluoride nanocrystals through an oleic acid/ionic liquid two-phase system.
    He M; Huang P; Zhang C; Ma J; He R; Cui D
    Chemistry; 2012 May; 18(19):5954-69. PubMed ID: 22454326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and galvanic replacement of silver nanocubes in organic media.
    Polavarapu L; Liz-Marzán LM
    Nanoscale; 2013 May; 5(10):4355-61. PubMed ID: 23571840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic Mechanisms in the Formation of SnTe Nanocrystals.
    O'Neill SW; Krauss TD
    J Am Chem Soc; 2022 Apr; 144(14):6251-6260. PubMed ID: 35348326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.