BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35770698)

  • 21. Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen.
    Guo H; Chen Y; Chen X; Wen R; Yue GH; Peng DL
    Nanotechnology; 2011 May; 22(19):195604. PubMed ID: 21430312
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aqueous-based route toward noble metal nanocrystals: morphology-controlled synthesis and their applications.
    Yuan Q; Wang X
    Nanoscale; 2010 Nov; 2(11):2328-35. PubMed ID: 20820647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bilayers as phase transfer agents for nanocrystals prepared in nonpolar solvents.
    Prakash A; Zhu H; Jones CJ; Benoit DN; Ellsworth AZ; Bryant EL; Colvin VL
    ACS Nano; 2009 Aug; 3(8):2139-46. PubMed ID: 19594166
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Annealing effects on 5 nm iron oxide nanoparticles.
    Vargas JM; Lima E; Socolovsky LM; Knobel M; Zanchet D; Zysler RD
    J Nanosci Nanotechnol; 2007 Sep; 7(9):3313-7. PubMed ID: 18019166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Membrane emulsification and solvent pervaporation processes for the continuous synthesis of functional magnetic and Janus nanobeads.
    Chang EP; Hatton TA
    Langmuir; 2012 Jun; 28(25):9748-58. PubMed ID: 22564129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of indium nanoparticles: digestive ripening under mild conditions.
    Cingarapu S; Yang Z; Sorensen CM; Klabunde KJ
    Inorg Chem; 2011 Jun; 50(11):5000-5. PubMed ID: 21520906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dispersibility of TiO
    Sudo T; Yamashita S; Koike N; Kamiya H; Okada Y
    Chemistry; 2023 Feb; 29(9):e202203608. PubMed ID: 36575960
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal-organic pathways for anisotropic growth of a highly symmetrical crystal structure: example of the fcc Ni.
    Mourdikoudis S; Collière V; Amiens C; Fau P; Kahn ML
    Langmuir; 2013 Nov; 29(44):13491-501. PubMed ID: 23927494
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights into the Ligand Shell, Coordination Mode, and Reactivity of Carboxylic Acid Capped Metal Oxide Nanocrystals.
    De Roo J; Baquero EA; Coppel Y; De Keukeleere K; Van Driessche I; Nayral C; Hens Z; Delpech F
    Chempluschem; 2016 Nov; 81(11):1216-1223. PubMed ID: 31964105
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anisotropy in Near-Spherical Colloidal Nanoparticles.
    Li C; Liu L; Zhang Z; Zhang D; Yi S; Yang H; Fan Z
    ACS Nano; 2023 Sep; 17(18):17873-17883. PubMed ID: 37682625
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlling the Morphology of Au-Pd Heterodimer Nanoparticles by Surface Ligands.
    Kluenker M; Connolly BM; Marolf DM; Nawaz Tahir M; Korschelt K; Simon P; Köhler U; Plana-Ruiz S; Barton B; Panthöfer M; Kolb U; Tremel W
    Inorg Chem; 2018 Nov; 57(21):13640-13652. PubMed ID: 30289701
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Silane-based poly(ethylene glycol) as a primer for surface modification of nonhydrolytically synthesized nanoparticles using the Stöber method.
    Shen R; Camargo PH; Xia Y; Yang H
    Langmuir; 2008 Oct; 24(19):11189-95. PubMed ID: 18781788
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions.
    Lu le T; Dung NT; Tung le D; Thanh CT; Quy OK; Chuc NV; Maenosono S; Thanh NT
    Nanoscale; 2015 Dec; 7(46):19596-610. PubMed ID: 26542630
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth mechanism of anisotropic gold nanocrystals via microwave synthesis: formation of dioleamide by gold nanocatalysis.
    Mohamed MB; AbouZeid KM; Abdelsayed V; Aljarash AA; El-Shall MS
    ACS Nano; 2010 May; 4(5):2766-72. PubMed ID: 20392051
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surfactant-controlled morphology and magnetic property of manganese ferrite nanocrystal contrast agent.
    Hu H; Tian ZQ; Liang J; Yang H; Dai AT; An L; Wu HX; Yang SP
    Nanotechnology; 2011 Feb; 22(8):085707. PubMed ID: 21242632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Double-Controlled Release of Poorly Water-Soluble Paliperidone Palmitate from Self-Assembled Albumin-Oleic Acid Nanoparticles in PLGA in situ Forming Implant.
    Yu Y; Ngo HV; Jin G; Tran PHL; Tran TTD; Nguyen VH; Park C; Lee BJ
    Int J Nanomedicine; 2021; 16():2819-2831. PubMed ID: 33888982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting nanocrystal shape through consideration of surface-ligand interactions.
    Bealing CR; Baumgardner WJ; Choi JJ; Hanrath T; Hennig RG
    ACS Nano; 2012 Mar; 6(3):2118-27. PubMed ID: 22329695
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Copper nanoparticles of well-controlled size and shape: a new advance in synthesis and self-organization.
    Ben Aissa MA; Tremblay B; Andrieux-Ledier A; Maisonhaute E; Raouafi N; Courty A
    Nanoscale; 2015 Feb; 7(7):3189-95. PubMed ID: 25615699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of Acid-Base Equilibria in the Size, Shape, and Phase Control of Cesium Lead Bromide Nanocrystals.
    Almeida G; Goldoni L; Akkerman Q; Dang Z; Khan AH; Marras S; Moreels I; Manna L
    ACS Nano; 2018 Feb; 12(2):1704-1711. PubMed ID: 29381326
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ capping for size control of monochalcogenide (ZnS, CdS and SnS) nanocrystals produced by anaerobic metal-reducing bacteria.
    Jang GG; Jacobs CB; Ivanov IN; Joshi PC; Meyer HM; Kidder M; Armstrong BL; Datskos PG; Graham DE; Moon JW
    Nanotechnology; 2015 Aug; 26(32):325602. PubMed ID: 26207018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.