These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 35770704)
1. A direct dynamics study of the exotic photochemistry of the simplest Criegee intermediate, CH Antwi E; Bush RE; Marchetti B; Karsili TNV Phys Chem Chem Phys; 2022 Jul; 24(27):16724-16731. PubMed ID: 35770704 [TBL] [Abstract][Full Text] [Related]
2. Photochemistry of the Simplest Criegee Intermediate, CH Li Y; Gong Q; Yue L; Wang W; Liu F J Phys Chem Lett; 2018 Mar; 9(5):978-981. PubMed ID: 29420035 [TBL] [Abstract][Full Text] [Related]
4. UV photodissociation dynamics of the acetone oxide Criegee intermediate: experiment and theory. Wang G; Liu T; Zou M; Karsili TNV; Lester MI Phys Chem Chem Phys; 2023 Mar; 25(10):7453-7465. PubMed ID: 36848133 [TBL] [Abstract][Full Text] [Related]
5. Quantum dynamical investigation of the simplest Criegee intermediate CH2OO and its O-O photodissociation channels. Samanta K; Beames JM; Lester MI; Subotnik JE J Chem Phys; 2014 Oct; 141(13):134303. PubMed ID: 25296802 [TBL] [Abstract][Full Text] [Related]
6. Prompt release of O Vansco MF; Li H; Lester MI J Chem Phys; 2017 Jul; 147(1):013907. PubMed ID: 28688384 [TBL] [Abstract][Full Text] [Related]
7. Communication: Ultraviolet photodissociation dynamics of the simplest Criegee intermediate CH2OO. Lehman JH; Li H; Beames JM; Lester MI J Chem Phys; 2013 Oct; 139(14):141103. PubMed ID: 24116596 [TBL] [Abstract][Full Text] [Related]
13. Full-dimensional neural network potential energy surface and dynamics of the CH Wu H; Fu Y; Dong W; Fu B; Zhang DH RSC Adv; 2023 May; 13(20):13397-13404. PubMed ID: 37143908 [TBL] [Abstract][Full Text] [Related]
14. Semiclassical Dynamics on Machine-Learned Coupled Multireference Potential Energy Surfaces: Application to the Photodissociation of the Simplest Criegee Intermediate. Sit MK; Das S; Samanta K J Phys Chem A; 2023 Mar; 127(10):2376-2387. PubMed ID: 36856588 [TBL] [Abstract][Full Text] [Related]
15. The states that hide in the shadows: the potential role of conical intersections in the ground state unimolecular decay of a Criegee intermediate. Marchetti B; Esposito VJ; Bush RE; Karsili TNV Phys Chem Chem Phys; 2021 Dec; 24(1):532-540. PubMed ID: 34904596 [TBL] [Abstract][Full Text] [Related]
16. Temperature-dependent kinetics of the atmospheric reaction between CH Wang PB; Truhlar DG; Xia Y; Long B Phys Chem Chem Phys; 2022 Jun; 24(21):13066-13073. PubMed ID: 35583864 [TBL] [Abstract][Full Text] [Related]
17. Computational Chemical Kinetics for the Reaction of Criegee Intermediate CH Raghunath P; Lee YP; Lin MC J Phys Chem A; 2017 May; 121(20):3871-3878. PubMed ID: 28453276 [TBL] [Abstract][Full Text] [Related]
18. Modeling the Ground- and Excited-State Unimolecular Decay of the Simplest Fluorinated Criegee Intermediate, HFCOO, Formed from the Ozonolysis of Hydrofluoroolefin Refrigerants. Poirier CA; Guidry LM; Ratliff JM; Esposito VJ; Marchetti B; Karsili TNV J Phys Chem A; 2023 Aug; 127(31):6377-6384. PubMed ID: 37523496 [TBL] [Abstract][Full Text] [Related]
19. Detailed mechanism of the CH₂I + O₂ reaction: yield and self-reaction of the simplest Criegee intermediate CH₂OO. Ting WL; Chang CH; Lee YF; Matsui H; Lee YP; Lin JJ J Chem Phys; 2014 Sep; 141(10):104308. PubMed ID: 25217917 [TBL] [Abstract][Full Text] [Related]
20. Electronic Spectroscopy and Dissociation Dynamics of Vinyl-Substituted Criegee Intermediates: 2-Butenal Oxide and Comparison with Methyl Vinyl Ketone Oxide and Methacrolein Oxide Isomers. Wang G; Liu T; Zou M; Sojdak CA; Kozlowski MC; Karsili TNV; Lester MI J Phys Chem A; 2023 Jan; 127(1):203-215. PubMed ID: 36574960 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]