These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35770856)

  • 1. From Nanoparticle Ensembles to Single Nanoparticles: Techniques for the Investigation of Plasmon Enhanced Electrochemistry.
    Liang Z; Li J; Zhou YG
    Chemistry; 2022 Sep; 28(53):e202201489. PubMed ID: 35770856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Electrochemistry of Single Plasmonic Nanoparticles.
    Zhang W; Li J; Xia XH; Zhou YG
    Angew Chem Int Ed Engl; 2022 Feb; 61(8):e202115819. PubMed ID: 34890086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-Impact Single-Entity Electrochemistry Enables Plasmon-Enhanced Electrocatalysis.
    Ganguli S; Zhao Z; Parlak O; Hattori Y; Sá J; Sekretareva A
    Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202302394. PubMed ID: 37078401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unveiling the Solvent Effect in Plasmon Enhanced Electrochemistry
    Liang Z; Xu W; Li J; Lin C; Zhang W; Liu W; Xia XH; Zhou YG
    Nano Lett; 2023 Dec; 23(23):10871-10878. PubMed ID: 37955520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Nanoparticle Electrochemistry through Immobilization and Collision.
    Anderson TJ; Zhang B
    Acc Chem Res; 2016 Nov; 49(11):2625-2631. PubMed ID: 27730817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Imaging of Electrochemical Reactions of Single Nanoparticles.
    Fang Y; Wang H; Yu H; Liu X; Wang W; Chen HY; Tao NJ
    Acc Chem Res; 2016 Nov; 49(11):2614-2624. PubMed ID: 27662069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Important Considerations in Plasmon-Enhanced Electrochemical Conversion at Voltage-Biased Electrodes.
    Corson ER; Creel EB; Kostecki R; McCloskey BD; Urban JJ
    iScience; 2020 Mar; 23(3):100911. PubMed ID: 32113155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hot or Not? Reassessing Mechanisms of Photocurrent Generation in Plasmon-Enhanced Electrocatalysis.
    Bagnall AJ; Ganguli S; Sekretareva A
    Angew Chem Int Ed Engl; 2024 Feb; 63(7):e202314352. PubMed ID: 38009712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Nanoparticle Coulometry Method with High Sensitivity and High Throughput to Study the Electrochemical Activity and Oscillation of Single Nanocatalysts.
    Lin M; Zhou Y; Bu L; Bai C; Tariq M; Wang H; Han J; Huang X; Zhou X
    Small; 2021 Apr; 17(14):e2007302. PubMed ID: 33719172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting plasmon-enhanced electrochemistry by
    Wang Y; Sang X; Wu F; Pang Y; Xu G; Yuan Y; Hsu HY; Niu W
    Nanoscale; 2023 Nov; 15(46):18901-18909. PubMed ID: 37975296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Plasmon-Accelerated Electrochemical Reaction on Gold Nanoparticles.
    Wang C; Nie XG; Shi Y; Zhou Y; Xu JJ; Xia XH; Chen HY
    ACS Nano; 2017 Jun; 11(6):5897-5905. PubMed ID: 28494145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current research on single-entity electrochemistry for soft nanoparticle detection: Introduction to detection methods and applications.
    Nguyen THT; Lee J; Kim HY; Nam KM; Kim BK
    Biosens Bioelectron; 2020 Mar; 151():111999. PubMed ID: 31999594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Octahedral noble-metal nanoparticles and their electrocatalytic properties.
    Wang C; Fang J
    ChemSusChem; 2013 Oct; 6(10):1848-57. PubMed ID: 23929796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single particle plasmonic and electrochemical dual mode detection of amantadine.
    Wang H; Wang SM; Zhao W; Chen HY; Xu JJ
    Anal Chim Acta; 2022 May; 1209():339838. PubMed ID: 35569869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures.
    Wilson AJ; Jain PK
    Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosting the Plasmon-Mediated Electrochemical Oxidation of
    Kohila Rani K; Yang Q; Xiao YH; Devasenathipathy R; Lu Z; Chen X; Jiang L; Li Z; Liu Q; Chen H; Yu L; Li Z; Khayour S; Wang J; Wang K; Li G; Wu DY; Lu G
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38038343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bifunctional nanocatalyst of bimetallic nanoparticle/TiO2 with enhanced performance in electrochemical and photoelectrochemical applications.
    Wen D; Guo S; Wang Y; Dong S
    Langmuir; 2010 Jul; 26(13):11401-6. PubMed ID: 20369896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical Reduction of Carbon Dioxide on Graphene-Based Catalysts.
    Delgado S; Arévalo MDC; Pastor E; García G
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33499217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Plasmon-Enhanced Electrochemistry for Enabling Ultrasensitive and Label-Free Detection of Circulating Tumor Cells in Blood.
    Wang SS; Zhao XP; Liu FF; Younis MR; Xia XH; Wang C
    Anal Chem; 2019 Apr; 91(7):4413-4420. PubMed ID: 30816698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.