BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35771145)

  • 1. A Tandemly Activated Fluorescence Probe for Detecting Senescent Cells with Improved Selectivity by Targeting a Biomarker Combination.
    Zhou L; Zhang X; Dong Y; Pan Y; Li J; Zang Y; Li X
    ACS Sens; 2022 Jul; 7(7):1958-1966. PubMed ID: 35771145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Activatable NIR Probe for the Detection and Elimination of Senescent Cells.
    Yang L; Liu G; Chen Q; Wan Y; Liu Z; Zhang J; Huang C; Xu Z; Li S; Lee CS; Zhang L; Sun H
    Anal Chem; 2022 Apr; 94(13):5425-5431. PubMed ID: 35319866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of highly sensitive fluorescent probes for the detection of β-galactosidase activity - application to the real-time monitoring of senescence in live cells.
    Safir Filho M; Dao P; Gesson M; Martin AR; Benhida R
    Analyst; 2018 May; 143(11):2680-2688. PubMed ID: 29774897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence-Based Detection of Ferrous Iron in Senescent Cells.
    Parella KJ; Manhardt C; Capucilli D; Moyer B; Colegrove H; Moody KJ; Sleeper M; Banas A; Rebbaa A; Wolfe AJ
    Rejuvenation Res; 2021 Dec; 24(6):456-463. PubMed ID: 34841899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of a turn-on fluorescent probe for detecting formaldehyde in biological systems and real food samples.
    Wang L; Ma Y; Lin W
    Food Chem; 2024 Aug; 450():139315. PubMed ID: 38615534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic Screening of Trigger Moieties for Designing Formaldehyde Fluorescent Probes and Application in Live Cell Imaging.
    Jiang Y; Huang S; Liu M; Li Z; Xiao W; Zhang H; Yang L; Sun H
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36290992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-Parameter Recognition-Directed Design of the Activatable Fluorescence Probe for Precise Imaging of Cellular Senescence.
    Li J; Wang L; Luo X; Xia Y; Xie Y; Liu Y; Tan W
    Anal Chem; 2023 Feb; 95(8):3996-4004. PubMed ID: 36795559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A robust activatable two-photon fluorescent probe for endogenous formaldehyde biomarker visualization diagnosis and evaluation of diabetes mellitus.
    Wang J; Li J; Xu L; Tan D; Guo R; Lin W
    Anal Chim Acta; 2023 Jul; 1266():341371. PubMed ID: 37244658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Fluorogenic Probe for Ultrafast and Reversible Detection of Formaldehyde in Neurovascular Tissues.
    Liang XG; Chen B; Shao LX; Cheng J; Huang MZ; Chen Y; Hu YZ; Han YF; Han F; Li X
    Theranostics; 2017; 7(8):2305-2313. PubMed ID: 28740553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple pyrene-based fluorescent probe for highly selective detection of formaldehyde and its application in live-cell imaging.
    Zhang D; Liu D; Li M; Yang Y; Wang Y; Yin H; Liu J; Jia B; Wu X
    Anal Chim Acta; 2018 Nov; 1033():180-184. PubMed ID: 30172324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modular development of organelle-targeting fluorescent probes for imaging formaldehyde in live cells.
    Zhang Y; Du Y; Liao K; Peng T
    Anal Methods; 2024 Jun; 16(23):3646-3653. PubMed ID: 38738568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo.
    Debacq-Chainiaux F; Erusalimsky JD; Campisi J; Toussaint O
    Nat Protoc; 2009; 4(12):1798-806. PubMed ID: 20010931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a Two-Photon Fluorescent Probe for Imaging of Endogenous Formaldehyde in Living Tissues.
    Tang Y; Kong X; Xu A; Dong B; Lin W
    Angew Chem Int Ed Engl; 2016 Mar; 55(10):3356-9. PubMed ID: 26844535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasensitive two-photon probes for rapid detection of β-galactosidase during fruit softening and cellular senescence.
    Shan YM; Yu KK; Yu FY; Liu YH; Yu XQ; Li K
    Food Chem; 2024 Jan; 431():137117. PubMed ID: 37598655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A lysosome-targeted fluorescent probe for the specific detection and imaging of formaldehyde in living cells.
    Cai S; Liu C; Gong J; He S; Zhao L; Zeng X
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 245():118949. PubMed ID: 32979809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Golgi Apparatus-Targeting, Naphthalimide-Based Fluorescent Molecular Probe for the Selective Sensing of Formaldehyde.
    Fortibui MM; Lim W; Lee S; Park S; Kim J
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reversible fluorescent probe based on C[double bond, length as m-dash]N isomerization for the selective detection of formaldehyde in living cells and in vivo.
    Song X; Han X; Yu F; Zhang J; Chen L; Lv C
    Analyst; 2018 Jan; 143(2):429-439. PubMed ID: 29260163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple naphthalene-based fluorescent probe for high selective detection of formaldehyde in toffees and HeLa cells via aza-Cope reaction.
    Xu J; Zhang Y; Zeng L; Liu J; Kinsella JM; Sheng R
    Talanta; 2016 Nov; 160():645-652. PubMed ID: 27591661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly sensitive and rapid responsive fluorescence probe for determination of formaldehyde in seafood and in vivo imaging application.
    Jiang L; Hu Q; Chen T; Min D; Yuan HQ; Bao GM
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117789. PubMed ID: 31780312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel fluorescent probe for ratiometric detection of formaldehyde in real food samples, living tissues and zebrafish.
    Yuan G; Ding H; Peng L; Zhou L; Lin Q
    Food Chem; 2020 Nov; 331():127221. PubMed ID: 32540697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.