BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35771452)

  • 1. Assessing the Redox Status of Mitochondria Through the NADH/FAD
    Chi H; Bhosale G; Duchen MR
    Methods Mol Biol; 2022; 2497():313-318. PubMed ID: 35771452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of mitochondrial NADH and FAD autofluorescence in live cells.
    Bartolomé F; Abramov AY
    Methods Mol Biol; 2015; 1264():263-70. PubMed ID: 25631020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of functioning of mitochondrial electron transport chain with NADH and FAD autofluorescence.
    Danylovych HV
    Ukr Biochem J; 2016; 88(1):31-43. PubMed ID: 29227076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A regulatory role of NAD redox status on flavin cofactor homeostasis in S. cerevisiae mitochondria.
    Giancaspero TA; Locato V; Barile M
    Oxid Med Cell Longev; 2013; 2013():612784. PubMed ID: 24078860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential Indexing of the Invasiveness of Breast Cancer Cells by Mitochondrial Redox Ratios.
    Sun N; Xu HN; Luo Q; Li LZ
    Adv Exp Med Biol; 2016; 923():121-127. PubMed ID: 27526133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid changes in NADH and flavin autofluorescence in rat cardiac trabeculae reveal large mitochondrial complex II reserve capacity.
    Wüst RC; Helmes M; Stienen GJ
    J Physiol; 2015 Apr; 593(8):1829-40. PubMed ID: 25640645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface fluorescence studies of tissue mitochondrial redox state in isolated perfused rat lungs.
    Staniszewski K; Audi SH; Sepehr R; Jacobs ER; Ranji M
    Ann Biomed Eng; 2013 Apr; 41(4):827-36. PubMed ID: 23238793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiphoton redox ratio imaging for metabolic monitoring in vivo.
    Skala M; Ramanujam N
    Methods Mol Biol; 2010; 594():155-62. PubMed ID: 20072916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-Free Optical Metabolic Imaging in Cells and Tissues.
    Georgakoudi I; Quinn KP
    Annu Rev Biomed Eng; 2023 Jun; 25():413-443. PubMed ID: 37104650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Optical Cryo-Imaging Method: A Novel Approach to Quantify Renal Mitochondrial Bioenergetics Dysfunction.
    Mehrvar S; Camara AKS; Ranji M
    Methods Mol Biol; 2021; 2276():259-270. PubMed ID: 34060048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio alginolyticus--redox states of the FAD prosthetic group and mechanism of Ag+ inhibition.
    Steuber J; Krebs W; Dimroth P
    Eur J Biochem; 1997 Nov; 249(3):770-6. PubMed ID: 9395325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The streptococcal flavoprotein NADH oxidase. II. Interactions of pyridine nucleotides with reduced and oxidized enzyme forms.
    Ahmed SA; Claiborne A
    J Biol Chem; 1989 Nov; 264(33):19863-70. PubMed ID: 2511196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status.
    Ostrander JH; McMahon CM; Lem S; Millon SR; Brown JQ; Seewaldt VL; Ramanujam N
    Cancer Res; 2010 Jun; 70(11):4759-66. PubMed ID: 20460512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies.
    Heikal AA
    Biomark Med; 2010 Apr; 4(2):241-63. PubMed ID: 20406068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging Redox State in Mouse Muscles of Different Ages.
    Moon L; Frederick DW; Baur JA; Li LZ
    Adv Exp Med Biol; 2017; 977():51-57. PubMed ID: 28685427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The existence of a lysosomal redox chain and the role of ubiquinone.
    Gille L; Nohl H
    Arch Biochem Biophys; 2000 Mar; 375(2):347-54. PubMed ID: 10700391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipoamide dehydrogenase from Escherichia coli lacking the redox active disulfide: C44S and C49S. Redox properties of the FAD and interactions with pyridine nucleotides.
    Hopkins N; Williams CH
    Biochemistry; 1995 Sep; 34(37):11766-76. PubMed ID: 7547909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterisation of the NADH:acceptor reductase component of xylene monooxygenase encoded by the TOL plasmid pWW0 of Pseudomonas putida mt-2.
    Shaw JP; Harayama S
    Eur J Biochem; 1992 Oct; 209(1):51-61. PubMed ID: 1327782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic Study of Time-Varying Optical Redox Ratio in NADH/FAD Solution.
    Lim SY; Jang JI; Yoon H; Kim HM
    J Phys Chem B; 2022 Dec; 126(47):9840-9849. PubMed ID: 36399328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidant mechanism of mitochondria-targeted plastoquinone SkQ1 is suppressed in aglycemic HepG2 cells dependent on oxidative phosphorylation.
    Ježek J; Engstová H; Ježek P
    Biochim Biophys Acta Bioenerg; 2017 Sep; 1858(9):750-762. PubMed ID: 28554565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.