BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35771455)

  • 1. A Plate Reader-Based Measurement of the Cellular ROS Production Using Dihydroethidium and MitoSOX.
    Chung CY; Duchen MR
    Methods Mol Biol; 2022; 2497():333-337. PubMed ID: 35771455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of potentiometric fluorophores in the measurement of mitochondrial reactive oxygen species.
    Polster BM; Nicholls DG; Ge SX; Roelofs BA
    Methods Enzymol; 2014; 547():225-50. PubMed ID: 25416361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of Reactive Oxygen Species (ROS) and Mitochondrial ROS in AMPK Knockout Mice Blood Vessels.
    Wang Q; Zou MH
    Methods Mol Biol; 2018; 1732():507-517. PubMed ID: 29480496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth.
    Zielonka J; Kalyanaraman B
    Free Radic Biol Med; 2010 Apr; 48(8):983-1001. PubMed ID: 20116425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent probes for the detection of reactive oxygen species in human spermatozoa.
    Escada-Rebelo S; Mora FG; Sousa AP; Almeida-Santos T; Paiva A; Ramalho-Santos J
    Asian J Androl; 2020; 22(5):465-471. PubMed ID: 31939350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of kinetics of dihydroethidium fluorescence with superoxide using xanthine oxidase and hypoxanthine assay.
    Chen J; Rogers SC; Kavdia M
    Ann Biomed Eng; 2013 Feb; 41(2):327-37. PubMed ID: 22965641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On methods for the detection of reactive oxygen species generation by human spermatozoa: analysis of the cellular responses to catechol oestrogen, lipid aldehyde, menadione and arachidonic acid.
    Aitken RJ; Smith TB; Lord T; Kuczera L; Koppers AJ; Naumovski N; Connaughton H; Baker MA; De Iuliis GN
    Andrology; 2013 Mar; 1(2):192-205. PubMed ID: 23316012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of Superoxide Production and NADPH Oxidase Activity by HPLC Analysis of Dihydroethidium Oxidation.
    Fernandes DC; Gonçalves RC; Laurindo FR
    Methods Mol Biol; 2017; 1527():233-249. PubMed ID: 28116721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and specific measurements of superoxide using fluorescence spectroscopy.
    Nazarewicz RR; Bikineyeva A; Dikalov SI
    J Biomol Screen; 2013 Apr; 18(4):498-503. PubMed ID: 23190737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biophysical properties and functional consequences of reactive oxygen species (ROS)-induced ROS release in intact myocardium.
    Biary N; Xie C; Kauffman J; Akar FG
    J Physiol; 2011 Nov; 589(Pt 21):5167-79. PubMed ID: 21825030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods to monitor ROS production by fluorescence microscopy and fluorometry.
    Wojtala A; Bonora M; Malinska D; Pinton P; Duszynski J; Wieckowski MR
    Methods Enzymol; 2014; 542():243-62. PubMed ID: 24862270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Throughput Screening Assessment of Reactive Oxygen Species (ROS) Generation using Dihydroethidium (DHE) Fluorescence Dye.
    Kumar R; Gullapalli RR
    J Vis Exp; 2024 Jan; (203):. PubMed ID: 38314817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low micromolar concentrations of the superoxide probe MitoSOX uncouple neural mitochondria and inhibit complex IV.
    Roelofs BA; Ge SX; Studlack PE; Polster BM
    Free Radic Biol Med; 2015 Sep; 86():250-8. PubMed ID: 26057935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle contractions induce acute changes in cytosolic superoxide, but slower responses in mitochondrial superoxide and cellular hydrogen peroxide.
    Pearson T; Kabayo T; Ng R; Chamberlain J; McArdle A; Jackson MJ
    PLoS One; 2014; 9(5):e96378. PubMed ID: 24875639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Live cell imaging of mitochondrial redox state in mammalian cells and yeast.
    Liao PC; Franco-Iborra S; Yang Y; Pon LA
    Methods Cell Biol; 2020; 155():295-319. PubMed ID: 32183963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HPLC-based monitoring of products formed from hydroethidine-based fluorogenic probes--the ultimate approach for intra- and extracellular superoxide detection.
    Kalyanaraman B; Dranka BP; Hardy M; Michalski R; Zielonka J
    Biochim Biophys Acta; 2014 Feb; 1840(2):739-44. PubMed ID: 23668959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel flow cytometry assay using dihydroethidium as redox-sensitive probe reveals NADPH oxidase-dependent generation of superoxide anion in human platelets exposed to amyloid peptide β.
    Abubaker AA; Vara D; Eggleston I; Canobbio I; Pula G
    Platelets; 2019; 30(2):181-189. PubMed ID: 29206074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gender differences in free radical homeostasis during aging: shorter-lived female C57BL6 mice have increased oxidative stress.
    Ali SS; Xiong C; Lucero J; Behrens MM; Dugan LL; Quick KL
    Aging Cell; 2006 Dec; 5(6):565-74. PubMed ID: 17129217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting, visualizing and quantitating the generation of reactive oxygen species in an amoeba model system.
    Zhang X; Soldati T
    J Vis Exp; 2013 Nov; (81):e50717. PubMed ID: 24300479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of DHE-derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems.
    Fernandes DC; Wosniak J; Pescatore LA; Bertoline MA; Liberman M; Laurindo FR; Santos CX
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C413-22. PubMed ID: 16971501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.