These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 35771521)
1. Ordered-Porous-Array Polymethyl Methacrylate Films for Radiative Cooling. Qi G; Tan X; Tu Y; Yang X; Qiao Y; Wang Y; Geng J; Yao S; Chen X ACS Appl Mater Interfaces; 2022 Jul; 14(27):31277-31284. PubMed ID: 35771521 [TBL] [Abstract][Full Text] [Related]
2. A structural polymer for highly efficient all-day passive radiative cooling. Wang T; Wu Y; Shi L; Hu X; Chen M; Wu L Nat Commun; 2021 Jan; 12(1):365. PubMed ID: 33446648 [TBL] [Abstract][Full Text] [Related]
3. Surface Pattern over a Thick Silica Film to Realize Passive Radiative Cooling. Liu Y; Li J; Liu C Materials (Basel); 2021 May; 14(10):. PubMed ID: 34070026 [TBL] [Abstract][Full Text] [Related]
4. Superhydrophobic Porous Coating of Polymer Composite for Scalable and Durable Daytime Radiative Cooling. Wang HD; Xue CH; Ji ZY; Huang MC; Jiang ZH; Liu BY; Deng FQ; An QF; Guo XJ ACS Appl Mater Interfaces; 2022 Nov; 14(45):51307-51317. PubMed ID: 36320188 [TBL] [Abstract][Full Text] [Related]
5. Super-Large-Scale Hierarchically Porous Films Based on Self-Assembled Eye-Like Air Pores for High-Performance Daytime Radiative Cooling. Tian Q; Tu X; Yang L; Liu H; Zhou Y; Xing Y; Chen Z; Fan S; Evans J; He S Small; 2022 Dec; 18(51):e2205091. PubMed ID: 36328709 [TBL] [Abstract][Full Text] [Related]
6. Macro-Nanoporous Film with Cauliflower-Shaped Fibers for Highly Efficient Passive Daytime Radiative Cooling. Wei L; Li N; Liu H; Sun C; Chen A; Yang R; Qin Y; Bao H ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39360809 [TBL] [Abstract][Full Text] [Related]
7. Daytime Radiative Cooling Coating Based on the Y Du T; Niu J; Wang L; Bai J; Wang S; Li S; Fan Y ACS Appl Mater Interfaces; 2022 Nov; 14(45):51351-51360. PubMed ID: 36332077 [TBL] [Abstract][Full Text] [Related]
8. Highly Optically Selective and Thermally Insulating Porous Calcium Silicate Composite SiO Han D; Wang C; Han CB; Cui Y; Ren WR; Zhao WK; Jiang Q; Yan H ACS Appl Mater Interfaces; 2024 Feb; 16(7):9303-9312. PubMed ID: 38343044 [TBL] [Abstract][Full Text] [Related]
9. Mass-Producible Transparent Flexible Passive-Cooling Film. Shao H; Niu J; Zhang Y; Wang H; Lu C; Ma Y; Chen H; Li S; Qian H ACS Appl Mater Interfaces; 2024 Oct; 16(42):57246-57252. PubMed ID: 39387687 [TBL] [Abstract][Full Text] [Related]
10. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling. Kong A; Cai B; Shi P; Yuan XC Opt Express; 2019 Oct; 27(21):30102-30115. PubMed ID: 31684263 [TBL] [Abstract][Full Text] [Related]
11. Ultrawhite BaSO Li X; Peoples J; Yao P; Ruan X ACS Appl Mater Interfaces; 2021 May; 13(18):21733-21739. PubMed ID: 33856776 [TBL] [Abstract][Full Text] [Related]
12. Bioinspired Polymer Films with Surface Ordered Pyramid Arrays and 3D Hierarchical Pores for Enhanced Passive Radiative Cooling. He J; Zhang Q; Zhou Y; Chen Y; Ge H; Tang S ACS Nano; 2024 Apr; 18(17):11120-11129. PubMed ID: 38626337 [TBL] [Abstract][Full Text] [Related]
13. Superhydrophobic SiO Sun Y; He H; Huang X; Guo Z ACS Appl Mater Interfaces; 2023 Jan; 15(3):4799-4813. PubMed ID: 36635243 [TBL] [Abstract][Full Text] [Related]
14. High-Durable, Radiative-Cooling, and Heat-Insulating Flexible Films Enabled by a Bioinspired Dictyophora-Like Structure. Zhou J; Ding C; Zhang X; Li D; Yang D; You B; Wu L ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 38032275 [TBL] [Abstract][Full Text] [Related]
15. Dual-Mode Integrated Janus Films with Highly Efficient NaH Yang P; He J; Ju Y; Zhang Q; Wu Y; Xia Z; Chen L; Tang S Adv Sci (Weinh); 2023 Mar; 10(7):e2206176. PubMed ID: 36638249 [TBL] [Abstract][Full Text] [Related]
16. Experimental Study on Energy-Free Superhydrophobic Radiative Cooling Versatile Film with Enhanced Environmental Tolerance. Nie S; Bai L; Lin G; Yuan K; Fu J; Zhang Y; Wang H; Lan H; Liu P; Tan X; Li X ACS Appl Mater Interfaces; 2024 May; 16(19):25498-25510. PubMed ID: 38701230 [TBL] [Abstract][Full Text] [Related]
17. Passive Daytime Radiative Cooling by Thermoplastic Polyurethane Wrapping Films with Controlled Hierarchical Porous Structures. Park C; Park C; Park S; Lee J; Choi JH; Kim YS; Yoo Y ChemSusChem; 2022 Dec; 15(24):e202201842. PubMed ID: 36269116 [TBL] [Abstract][Full Text] [Related]
18. Dual-Mode Porous Polymeric Films with Coral-like Hierarchical Structure for All-Day Radiative Cooling and Heating. Shi M; Song Z; Ni J; Du X; Cao Y; Yang Y; Wang W; Wang J ACS Nano; 2023 Feb; 17(3):2029-2038. PubMed ID: 36638216 [TBL] [Abstract][Full Text] [Related]
19. Antibacterial PVDF Coral-Like Hierarchical Structure Composite Film Fabrication for Self-Cleaning and Radiative Cooling Effect. Hu W; Zhang F; Tan X; Tu Y; Nie S ACS Appl Mater Interfaces; 2024 Apr; 16(15):19828-19837. PubMed ID: 38567790 [TBL] [Abstract][Full Text] [Related]
20. Porous Structure of Polymer Films Optimized by Rationally Tuning Phase Separation for Passive All-Day Radiative Cooling. Li L; Liu G; Zhang Q; Zhao H; Shi R; Wang C; Li Z; Zhou B; Zhang Y ACS Appl Mater Interfaces; 2024 Feb; 16(5):6504-6512. PubMed ID: 38267401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]