These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35771786)

  • 1. Probabilistic Motion Prediction and Skill Learning for Human-to-Cobot Dual-Arm Handover Control.
    Yan Z; He W; Wang Y; Sun L; Yu X
    IEEE Trans Neural Netw Learn Syst; 2024 Jan; 35(1):1192-1204. PubMed ID: 35771786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Handover Control for Human-Robot and Robot-Robot Collaboration.
    Costanzo M; De Maria G; Natale C
    Front Robot AI; 2021; 8():672995. PubMed ID: 34026858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Human Intention Prediction Approach Based on Fuzzy Rules through Wearable Sensing in Human-Robot Handover.
    Zou R; Liu Y; Li Y; Chu G; Zhao J; Cai H
    Biomimetics (Basel); 2023 Aug; 8(4):. PubMed ID: 37622963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motion planning framework based on dual-agent DDPG method for dual-arm robots guided by human joint angle constraints.
    Liang K; Zha F; Guo W; Liu S; Wang P; Sun L
    Front Neurorobot; 2024; 18():1362359. PubMed ID: 38455735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composite-Learning-Based Adaptive Neural Control for Dual-Arm Robots With Relative Motion.
    Jiang Y; Wang Y; Miao Z; Na J; Zhao Z; Yang C
    IEEE Trans Neural Netw Learn Syst; 2022 Mar; 33(3):1010-1021. PubMed ID: 33361000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing human-robot handovers: the impact of adaptive transport methods.
    Käppler M; Mamaev I; Alagi H; Stein T; Deml B
    Front Robot AI; 2023; 10():1155143. PubMed ID: 37520939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A systematic review of handover actions in human dyads.
    Kopnarski L; Rudisch J; Voelcker-Rehage C
    Front Psychol; 2023; 14():1147296. PubMed ID: 37213382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cobot Motion Planning Algorithm for Ensuring Human Safety Based on Behavioral Dynamics.
    Liu B; Fu W; Wang W; Li R; Gao Z; Peng L; Du H
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probabilistic Dual-Space Fusion for Real-Time Human-Robot Interaction.
    Li Y; Wu J; Chen X; Guan Y
    Biomimetics (Basel); 2023 Oct; 8(6):. PubMed ID: 37887628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal movement planning and rapid adaptation for manual interaction.
    Huber M; Kupferberg A; Lenz C; Knoll A; Brandt T; Glasauer S
    PLoS One; 2013; 8(5):e64982. PubMed ID: 23724112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The where of handovers by humans: Effect of partner characteristics, distance and visual feedback.
    Kato S; Yamanobe N; Venture G; Yoshida E; Ganesh G
    PLoS One; 2019; 14(6):e0217129. PubMed ID: 31226108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Reference Frames for a Safe Human-Robot Interaction.
    Borboni A; Pagani R; Sandrini S; Carbone G; Pellegrini N
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does the introduction of a cobot change the productivity and posture of the operators in a collaborative task?
    Bouillet K; Lemonnier S; Clanche F; Gauchard G
    PLoS One; 2023; 18(8):e0289787. PubMed ID: 37556492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Hybrid Framework for Understanding and Predicting Human Reaching Motions.
    Oguz OS; Zhou Z; Wollherr D
    Front Robot AI; 2018; 5():27. PubMed ID: 33500914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Robust UWSN Handover Prediction System Using Ensemble Learning.
    Eldesouky E; Bekhit M; Fathalla A; Salah A; Ali A
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on Robot Fuzzy Neural Network Motion System Based on Artificial Intelligence.
    Hu J
    Comput Intell Neurosci; 2022; 2022():4347772. PubMed ID: 35186062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robot Grasp Planning: A Learning from Demonstration-Based Approach.
    Wang K; Fan Y; Sakuma I
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase portraits as movement primitives for fast humanoid robot control.
    Maeda G; Koç O; Morimoto J
    Neural Netw; 2020 Sep; 129():109-122. PubMed ID: 32505964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network switching strategy for energy conservation in heterogeneous networks.
    Song Y; Choi W; Baek S
    PLoS One; 2017; 12(2):e0172318. PubMed ID: 28241083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perceived safety in human-cobot interaction for fixed-path and real-time motion planning algorithms.
    Tusseyeva I; Oleinikov A; Sandygulova A; Rubagotti M
    Sci Rep; 2022 Nov; 12(1):20438. PubMed ID: 36443369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.