These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35771786)

  • 21. Robot Learning System Based on Adaptive Neural Control and Dynamic Movement Primitives.
    Yang C; Chen C; He W; Cui R; Li Z
    IEEE Trans Neural Netw Learn Syst; 2019 Mar; 30(3):777-787. PubMed ID: 30047914
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems.
    Rückert E; d'Avella A
    Front Comput Neurosci; 2013; 7():138. PubMed ID: 24146647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A neural tracking and motor control approach to improve rehabilitation of upper limb movements.
    Goffredo M; Bernabucci I; Schmid M; Conforto S
    J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
    Jagodnik KM; Thomas PS; van den Bogert AJ; Branicky MS; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1892-1905. PubMed ID: 28475063
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measuring System for Synchronous Recording of Kinematic and Force Data during Handover Action of Human Dyads.
    Kutz DF; Kopnarski L; Püschel J; Rudisch J; Voelcker-Rehage C
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139540
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Task-Learning Strategy for Robotic Assembly Tasks from Human Demonstrations.
    Ding G; Liu Y; Zang X; Zhang X; Liu G; Zhao J
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992888
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transparent Interaction Based Learning for Human-Robot Collaboration.
    Bagheri E; De Winter J; Vanderborght B
    Front Robot AI; 2022; 9():754955. PubMed ID: 35308459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proactive Handover Decision for UAVs with Deep Reinforcement Learning.
    Jang Y; Raza SM; Kim M; Choo H
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulation-Aided Handover Prediction From Video Using Recurrent Image-to-Motion Networks.
    Mavsar M; Ridge B; Pahic R; Morimoto J; Ude A
    IEEE Trans Neural Netw Learn Syst; 2022 May; PP():. PubMed ID: 35635818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A User Study on Robot Skill Learning Without a Cost Function: Optimization of Dynamic Movement Primitives via Naive User Feedback.
    Vollmer AL; Hemion NJ
    Front Robot AI; 2018; 5():77. PubMed ID: 33500956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generalization of object manipulation skills learned without limb motion.
    Mah CD; Mussa-Ivaldi FA
    J Neurosci; 2003 Jun; 23(12):4821-5. PubMed ID: 12832503
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using Probabilistic Movement Primitives in Analyzing Human Motion Differences Under Transcranial Current Stimulation.
    Xue H; Herzog R; Berger TM; Bäumer T; Weissbach A; Rueckert E
    Front Robot AI; 2021; 8():721890. PubMed ID: 34595209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Handover Optimization Algorithm Based on T2RFS-FNN.
    Chen Y; Niu K; Zhang W
    Comput Intell Neurosci; 2022; 2022():6293192. PubMed ID: 36567812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human-Human Handover Tasks and How Distance and Object Mass Matter.
    Hansen C; Arambel P; Ben Mansour K; Perdereau V; Marin F
    Percept Mot Skills; 2017 Feb; 124(1):182-199. PubMed ID: 30208781
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lifelong 3D object recognition and grasp synthesis using dual memory recurrent self-organization networks.
    Santhakumar K; Kasaei H
    Neural Netw; 2022 Jun; 150():167-180. PubMed ID: 35313248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Training of deep neural networks for the generation of dynamic movement primitives.
    Pahič R; Ridge B; Gams A; Morimoto J; Ude A
    Neural Netw; 2020 Jul; 127():121-131. PubMed ID: 32339807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction learning control with movement primitives for lower limb exoskeleton.
    Wang J; Wu D; Gao Y; Dong W
    Front Neurorobot; 2022; 16():1086578. PubMed ID: 36605521
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Neural Dynamic Architecture for Reaching and Grasping Integrates Perception and Movement Generation and Enables On-Line Updating.
    Knips G; Zibner SK; Reimann H; Schöner G
    Front Neurorobot; 2017; 11():9. PubMed ID: 28303100
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Learning parametric dynamic movement primitives from multiple demonstrations.
    Matsubara T; Hyon SH; Morimoto J
    Neural Netw; 2011 Jun; 24(5):493-500. PubMed ID: 21388784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Impacts of Human-Cobot Collaboration on Perceived Cognitive Load and Usability during an Industrial Task: An Exploratory Experiment.
    Fournier É; Kilgus D; Landry A; Hmedan B; Pellier D; Fiorino H; Jeoffrion C
    IISE Trans Occup Ergon Hum Factors; 2022; 10(2):83-90. PubMed ID: 35485174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.