BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35771864)

  • 1. Integration of multidimensional splicing data and GWAS summary statistics for risk gene discovery.
    Ji Y; Wei Q; Chen R; Wang Q; Tao R; Li B
    PLoS Genet; 2022 Jun; 18(6):e1009814. PubMed ID: 35771864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies.
    Feng H; Mancuso N; Gusev A; Majumdar A; Major M; Pasaniuc B; Kraft P
    PLoS Genet; 2021 Apr; 17(4):e1008973. PubMed ID: 33831007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of multi-trait associations using pathway-based analysis of GWAS summary statistics.
    Pei G; Sun H; Dai Y; Liu X; Zhao Z; Jia P
    BMC Genomics; 2019 Feb; 20(Suppl 1):79. PubMed ID: 30712509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating eQTL data with GWAS summary statistics in pathway-based analysis with application to schizophrenia.
    Wu C; Pan W
    Genet Epidemiol; 2018 Apr; 42(3):303-316. PubMed ID: 29411426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analysis of genetically regulated gene expression across multiple tissues implicates novel gene candidates in Alzheimer's disease.
    Gerring ZF; Lupton MK; Edey D; Gamazon ER; Derks EM
    Alzheimers Res Ther; 2020 Apr; 12(1):43. PubMed ID: 32299494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A general framework for functionally informed set-based analysis: Application to a large-scale colorectal cancer study.
    Dong X; Su YR; Barfield R; Bien SA; He Q; Harrison TA; Huyghe JR; Keku TO; Lindor NM; Schafmayer C; Chan AT; Gruber SB; Jenkins MA; Kooperberg C; Peters U; Hsu L
    PLoS Genet; 2020 Aug; 16(8):e1008947. PubMed ID: 32833970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach.
    Guo B; Wu B
    Bioinformatics; 2019 Jul; 35(13):2251-2257. PubMed ID: 30476000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies.
    Li B; Veturi Y; Bradford Y; Verma SS; Verma A; Lucas AM; Haas DW; Ritchie MD
    Pac Symp Biocomput; 2019; 24():296-307. PubMed ID: 30864331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A powerful and versatile colocalization test.
    Deng Y; Pan W
    PLoS Comput Biol; 2020 Apr; 16(4):e1007778. PubMed ID: 32275709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for meta-analysis of multiple traits using GWAS summary statistics.
    Ray D; Boehnke M
    Genet Epidemiol; 2018 Mar; 42(2):134-145. PubMed ID: 29226385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. InTACT: An adaptive and powerful framework for joint-tissue transcriptome-wide association studies.
    Bae YE; Wu L; Wu C
    Genet Epidemiol; 2021 Dec; 45(8):848-859. PubMed ID: 34255882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subset-based method for cross-tissue transcriptome-wide association studies improves power and interpretability.
    Guo X; Chatterjee N; Dutta D
    HGG Adv; 2024 Apr; 5(2):100283. PubMed ID: 38491773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fast and powerful eQTL weighted method to detect genes associated with complex trait using GWAS summary data.
    Zhang J; Xie S; Gonzales S; Liu J; Wang X
    Genet Epidemiol; 2020 Sep; 44(6):550-563. PubMed ID: 32350919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of PrediXcan for prioritizing GWAS associations and predicting gene expression.
    Li B; Verma SS; Veturi YC; Verma A; Bradford Y; Haas DW; Ritchie MD
    Pac Symp Biocomput; 2018; 23():448-459. PubMed ID: 29218904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive comparison of multilocus association methods with summary statistics in genome-wide association studies.
    Shao Z; Wang T; Qiao J; Zhang Y; Huang S; Zeng P
    BMC Bioinformatics; 2022 Aug; 23(1):359. PubMed ID: 36042399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene-based association tests using GWAS summary statistics and incorporating eQTL.
    Cao X; Wang X; Zhang S; Sha Q
    Sci Rep; 2022 Mar; 12(1):3553. PubMed ID: 35241742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PLEIO: a method to map and interpret pleiotropic loci with GWAS summary statistics.
    Lee CH; Shi H; Pasaniuc B; Eskin E; Han B
    Am J Hum Genet; 2021 Jan; 108(1):36-48. PubMed ID: 33352115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GenToS: Use of Orthologous Gene Information to Prioritize Signals from Human GWAS.
    Hoppmann AS; Schlosser P; Backofen R; Lausch E; Köttgen A
    PLoS One; 2016; 11(9):e0162466. PubMed ID: 27612175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic control of RNA splicing and its distinct role in complex trait variation.
    Qi T; Wu Y; Fang H; Zhang F; Liu S; Zeng J; Yang J
    Nat Genet; 2022 Sep; 54(9):1355-1363. PubMed ID: 35982161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.