These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35772328)

  • 1. 3D numerical simulation of hot airflow in the human nasal cavity and trachea.
    Shamohammadi H; Mehrabi S; Sadrizadeh S; Yaghoubi M; Abouali O
    Comput Biol Med; 2022 Aug; 147():105702. PubMed ID: 35772328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Air-conditioning characteristics in nasal cavity models exhibiting nasal cycle states.
    Byun S; Chung SK; Na Y
    J Therm Biol; 2019 Jul; 83():60-68. PubMed ID: 31331526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational simulation of temperature and velocity distribution in human upper respiratory airway during inhalation of hot air.
    Goodarzi-Ardakani V; Taeibi-Rahni M; Salimi MR; Ahmadi G
    Respir Physiol Neurobiol; 2016 Mar; 223():49-58. PubMed ID: 26777422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Details of the physiology of the aerodynamic and heat and moisture transfer in the normal nasal cavity.
    Hazeri M; Farshidfar Z; Faramarzi M; Sadrizadeh S; Abouali O
    Respir Physiol Neurobiol; 2020 Sep; 280():103480. PubMed ID: 32553890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulation of nasal airflows and thermal air modification in newborns.
    Moreddu E; Meister L; Dabadie A; Triglia JM; Médale M; Nicollas R
    Med Biol Eng Comput; 2020 Feb; 58(2):307-317. PubMed ID: 31848979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nasal air conditioning following total inferior turbinectomy compared to inferior turbinoplasty - A computational fluid dynamics study.
    Siu J; Inthavong K; Dong J; Shang Y; Douglas RG
    Clin Biomech (Bristol, Avon); 2021 Jan; 81():105237. PubMed ID: 33272646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the ambient temperature on the airflow across a Caucasian nasal cavity.
    Burgos MA; Sanmiguel-Rojas E; Martín-Alcántara A; Hidalgo-Martínez M
    Int J Numer Method Biomed Eng; 2014 Mar; 30(3):430-45. PubMed ID: 24574201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical investigation of airflow, heat transfer and particle deposition for oral breathing in a realistic human upper airway model.
    Xu XY; Ni SJ; Fu M; Zheng X; Luo N; Weng WG
    J Therm Biol; 2017 Dec; 70(Pt A):53-63. PubMed ID: 29074026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A numerical simulation of air flow in the human respiratory system for various environmental conditions.
    Issakhov A; Zhandaulet Y; Abylkassymova A; Issakhov A
    Theor Biol Med Model; 2021 Jan; 18(1):2. PubMed ID: 33407610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic characteristics of heat capacity of the human nasal cavity during a respiratory cycle.
    Chung SK; Na Y
    Respir Physiol Neurobiol; 2021 Aug; 290():103674. PubMed ID: 33894344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical study on the air conditioning characteristics of the human nasal cavity.
    Kim DW; Chung SK; Na Y
    Comput Biol Med; 2017 Jul; 86():18-30. PubMed ID: 28499215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voxel-based simulation of flow and temperature in the human nasal cavity.
    Kimura S; Miura S; Sera T; Yokota H; Ono K; Doorly DJ; Schroter RC; Tanaka G
    Comput Methods Biomech Biomed Engin; 2021 Mar; 24(4):459-466. PubMed ID: 33095062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Air conditioning analysis among human nasal passages with anterior anatomical variations.
    Ma J; Dong J; Shang Y; Inthavong K; Tu J; Frank-Ito DO
    Med Eng Phys; 2018 Jul; 57():19-28. PubMed ID: 29706484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Numerical simulation study on effects of ambient temperature on airflow in the nasal cavity].
    Xiong GX; Li JF; Lei WB; Zhou XH; Zhan JM; Xu G
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2011 Nov; 46(11):928-32. PubMed ID: 22335980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico investigation of sneezing in a full real human upper airway using computational fluid dynamics method.
    Mortazavy Beni H; Hassani K; Khorramymehr S
    Comput Methods Programs Biomed; 2019 Aug; 177():203-209. PubMed ID: 31319949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of excessive humidity.
    Williams RB
    Respir Care Clin N Am; 1998 Jun; 4(2):215-28. PubMed ID: 9648183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Reconstruction of three-dimensional numerical model and numerical simulation of airflow in a human upper airway].
    Qian YM; Chen LP; Wu YD; Jiao T
    Shanghai Kou Qiang Yi Xue; 2010 Jun; 19(3):310-4. PubMed ID: 20635047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of normal nasal cavity airflow in Chinese adult: a computational flow dynamics model.
    Tan J; Han D; Wang J; Liu T; Wang T; Zang H; Li Y; Wang X
    Eur Arch Otorhinolaryngol; 2012 Mar; 269(3):881-9. PubMed ID: 21938528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D phase contrast MRI in models of human airways: Validation of computational fluid dynamics simulations of steady inspiratory flow.
    Collier GJ; Kim M; Chung Y; Wild JM
    J Magn Reson Imaging; 2018 Nov; 48(5):1400-1409. PubMed ID: 29630757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of the Velocity and Temperature Distribution of Inhalation Thermal Injury in a Human Upper Airway Model by Application of Computational Fluid Dynamics.
    Chang Y; Zhao XZ; Wang C; Ning FG; Zhang GA
    J Burn Care Res; 2015; 36(4):500-8. PubMed ID: 25412055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.