BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35772348)

  • 1. Inducible endothelial leakiness in nanotherapeutic applications.
    Ni N; Wang W; Sun Y; Sun X; Leong DT
    Biomaterials; 2022 Aug; 287():121640. PubMed ID: 35772348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold Nanoparticles Induced Endothelial Leakiness Depends on Particle Size and Endothelial Cell Origin.
    Setyawati MI; Tay CY; Bay BH; Leong DT
    ACS Nano; 2017 May; 11(5):5020-5030. PubMed ID: 28422481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticles' interactions with vasculature in diseases.
    Tee JK; Yip LX; Tan ES; Santitewagun S; Prasath A; Ke PC; Ho HK; Leong DT
    Chem Soc Rev; 2019 Oct; 48(21):5381-5407. PubMed ID: 31495856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness.
    Peng F; Setyawati MI; Tee JK; Ding X; Wang J; Nga ME; Ho HK; Leong DT
    Nat Nanotechnol; 2019 Mar; 14(3):279-286. PubMed ID: 30692675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angiopoietin-1 accelerates restoration of endothelial cell barrier integrity from nanoparticle-induced leakiness.
    Tee JK; Setyawati MI; Peng F; Leong DT; Ho HK
    Nanotoxicology; 2019 Jun; 13(5):682-700. PubMed ID: 30776942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering tumoral vascular leakiness with gold nanoparticles.
    Setyawati MI; Wang Q; Ni N; Tee JK; Ariga K; Ke PC; Ho HK; Wang Y; Leong DT
    Nat Commun; 2023 Jul; 14(1):4269. PubMed ID: 37460554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles.
    Lasak M; Ciepluch K
    Beilstein J Nanotechnol; 2023; 14():329-338. PubMed ID: 36925613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines.
    Greish K
    J Drug Target; 2007; 15(7-8):457-64. PubMed ID: 17671892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor vasculature targeted photodynamic therapy for enhanced delivery of nanoparticles.
    Zhen Z; Tang W; Chuang YJ; Todd T; Zhang W; Lin X; Niu G; Liu G; Wang L; Pan Z; Chen X; Xie J
    ACS Nano; 2014 Jun; 8(6):6004-13. PubMed ID: 24806291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human solid tumors and clinical relevance of the enhanced permeation and retention effect: a 'golden gate' for nanomedicine in preclinical studies?
    Gawali P; Saraswat A; Bhide S; Gupta S; Patel K
    Nanomedicine (Lond); 2023 Jan; 18(2):169-190. PubMed ID: 37042320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significance of blood vessel leakiness in cancer.
    McDonald DM; Baluk P
    Cancer Res; 2002 Sep; 62(18):5381-5. PubMed ID: 12235011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning Endothelial Permeability with Functionalized Nanodiamonds.
    Setyawati MI; Mochalin VN; Leong DT
    ACS Nano; 2016 Jan; 10(1):1170-81. PubMed ID: 26643115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies to improve the EPR effect: A mechanistic perspective and clinical translation.
    Ikeda-Imafuku M; Wang LL; Rodrigues D; Shaha S; Zhao Z; Mitragotri S
    J Control Release; 2022 May; 345():512-536. PubMed ID: 35337939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting endothelial permeability in the EPR effect.
    Lahooti B; Akwii RG; Zahra FT; Sajib MS; Lamprou M; Alobaida A; Lionakis MS; Mattheolabakis G; Mikelis CM
    J Control Release; 2023 Sep; 361():212-235. PubMed ID: 37517543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle Density: A Critical Biophysical Regulator of Endothelial Permeability.
    Tay CY; Setyawati MI; Leong DT
    ACS Nano; 2017 Mar; 11(3):2764-2772. PubMed ID: 28287706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Augmentation of the Enhanced Permeability and Retention Effect with Nitric Oxide-Generating Agents Improves the Therapeutic Effects of Nanomedicines.
    Islam W; Fang J; Imamura T; Etrych T; Subr V; Ulbrich K; Maeda H
    Mol Cancer Ther; 2018 Dec; 17(12):2643-2653. PubMed ID: 30232144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting.
    Greish K
    Methods Mol Biol; 2010; 624():25-37. PubMed ID: 20217587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcytosis-enabled active extravasation of tumor nanomedicine.
    Zhou Q; Li J; Xiang J; Shao S; Zhou Z; Tang J; Shen Y
    Adv Drug Deliv Rev; 2022 Oct; 189():114480. PubMed ID: 35952830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stealthy nanoparticles protect endothelial barrier from leakiness by resisting the absorption of VE-cadherin.
    Huang Y; Wang S; Zhang J; Wang H; Zou Q; Wu L
    Nanoscale; 2021 Aug; 13(29):12577-12586. PubMed ID: 34259298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors affecting the dynamics and heterogeneity of the EPR effect: pathophysiological and pathoanatomic features, drug formulations and physicochemical factors.
    Islam R; Maeda H; Fang J
    Expert Opin Drug Deliv; 2022 Feb; 19(2):199-212. PubMed ID: 33430661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.