These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35772365)

  • 1. Preparation of monolith-based adsorbent containing abundant functional groups for field entrapment of nitrogen and sulfur containing aromatic compounds in environmental aqueous samples with portable multichannel in-tip microextraction device.
    Li X; Wang Z; Huang X
    J Chromatogr A; 2022 Aug; 1676():463260. PubMed ID: 35772365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-site sample preparation of trace aromatic amines in environmental waters with monolith-based multichannel in-tip microextraction apparatus followed by HPLC determination.
    Wang Z; Liao Y; Chen L; Huang X
    Talanta; 2020 Dec; 220():121423. PubMed ID: 32928433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-line combining monolith-based in-tube solid phase microextraction and high-performance liquid chromatography- fluorescence detection for the sensitive monitoring of polycyclic aromatic hydrocarbons in complex samples.
    Pang J; Yuan D; Huang X
    J Chromatogr A; 2018 Oct; 1571():29-37. PubMed ID: 30177269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient entrapment of inorganic Se species in water and beer samples with functional groups-rich monolith-based adsorbent.
    Luo S; Song X; Peng J; Huang X
    J Sep Sci; 2022 May; 45(9):1560-1569. PubMed ID: 35199936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecularly imprinted monolith-based portable in-tip microextraction device for field specific extraction of triazine herbicides in aqueous samples followed by chromatographic quantification.
    Luo S; Wu J; Huang X
    J Chromatogr A; 2023 Jan; 1689():463743. PubMed ID: 36586286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymeric ionic liquid-based portable tip microextraction device for on-site sample preparation of water samples.
    Chen L; Pei J; Huang X; Lu M
    J Chromatogr A; 2018 Aug; 1564():34-41. PubMed ID: 29908704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric field-reinforced solid phase microextraction based on anion-exchange monolith for efficient entrapment of anions in aqueous and wine samples.
    Wu J; Huang X
    J Chromatogr A; 2022 Aug; 1676():463291. PubMed ID: 35792441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous monolith-based magnetism-reinforced in-tube solid phase microextraction of sulfonylurea herbicides in water and soil samples.
    Pang J; Song X; Huang X; Yuan D
    J Chromatogr A; 2020 Feb; 1613():460672. PubMed ID: 31727353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Task specific adsorbent based on porous monolith for efficient capture of synthetic colorants in beverages and preserved fruits prior to chromatographic analysis.
    Chen H; Lu M; Huang X
    J Chromatogr A; 2022 Jul; 1675():463144. PubMed ID: 35613506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecularly imprinted polymer thin-film as a micro-extraction adsorbent for selective determination of trace concentrations of polycyclic aromatic sulfur heterocycles in seawater.
    Hijazi HY; Bottaro CS
    J Chromatogr A; 2020 Apr; 1617():460824. PubMed ID: 31980260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of monolithic fibers for the solid-phase microextraction of chlorophenols in water samples.
    Huang X; Zhang Y; Mei M; Yuan D
    J Sep Sci; 2014 May; 37(9-10):1185-93. PubMed ID: 24591343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Online analysis of five organic ultraviolet filters in environmental water samples using magnetism-enhanced monolith-based in-tube solid phase microextraction coupled with high-performance liquid chromatography.
    Mei M; Huang X
    J Chromatogr A; 2017 Nov; 1525():1-9. PubMed ID: 29055526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile fabrication of functional groups-rich sorbent for the efficient enrichment of aromatic N- and S-containing compounds in environmental waters.
    Li W; Wu J; Huang X
    Anal Chim Acta; 2020 May; 1113():36-42. PubMed ID: 32340667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-organic framework-monolith composite-based in-tube solid phase microextraction on-line coupled to high-performance liquid chromatography-fluorescence detection for the highly sensitive monitoring of fluoroquinolones in water and food samples.
    Pang J; Liao Y; Huang X; Ye Z; Yuan D
    Talanta; 2019 Jul; 199():499-506. PubMed ID: 30952290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-pot fabrication of poly (ionic liquid)s functionalized magnetic adsorbent for efficient enrichment of phenylurea herbicides in environmental waters.
    Hong K; Huang Y; Zheng L; Zheng X; Huang X
    Anal Chim Acta; 2022 Mar; 1198():339549. PubMed ID: 35190134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Online measurement of tetraethyllead in aqueous samples utilizing monolith-based magnetism-enhanced in-tube solid phase microextraction coupled with chromatographic analysis.
    Song X; Meng X; Chen M; Wang L; Li X; Huang X
    J Chromatogr A; 2023 Jul; 1700():464040. PubMed ID: 37148567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanotube-based benzyl polymethacrylate composite monolith as a solid phase extraction adsorbent and a stationary phase material for simultaneous extraction and analysis of polycyclic aromatic hydrocarbon in water.
    Al-Rifai A; Aqel A; Wahibi LA; ALOthman ZA; Badjah-Hadj-Ahmed AY
    J Chromatogr A; 2018 Feb; 1535():17-26. PubMed ID: 29310872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of monolithic chelating adsorbent inside a syringe filter tip for solid phase microextraction of trace elements in natural water prior to their determination by ICP-MS.
    Rahmi D; Takasaki Y; Zhu Y; Kobayashi H; Konagaya S; Haraguchi H; Umemura T
    Talanta; 2010 Jun; 81(4-5):1438-45. PubMed ID: 20441920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of phenyl-boronic acid polymeric monolith by initiator-free ring-opening polymerization for microextraction of sulfonamides prior to their determination by ultra-performance liquid chromatography-tandem mass spectrometry.
    Duan R; Sun L; Yang HY; Ma YR; Deng XY; Peng C; Zheng C; Dong LY; Wang XH
    J Chromatogr A; 2020 Jan; 1609():460510. PubMed ID: 31515077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of functional group-rich monoliths for magnetic field-assisted in-tube solid phase microextraction of inorganic selenium species in water samples followed by online chromatographic determination.
    Song X; Luo S; Liu J; Wu Y; Huang X
    Analyst; 2022 Mar; 147(7):1499-1508. PubMed ID: 35290422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.