These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 35772533)
1. Prediction of polarity-dependent environmental behaviors of humic substances (HS) using a HS hydrophobicity index based on hydrophilic interaction chromatography. Park TJ; Shin HS; Hur J Sci Total Environ; 2022 Oct; 843():156993. PubMed ID: 35772533 [TBL] [Abstract][Full Text] [Related]
2. Fragment-based approach to calculate hydrophobicity of anionic and nonionic surfactants derived from chromatographic retention on a C Hammer J; Haftka JJ; Scherpenisse P; Hermens JL; de Voogt PW Environ Toxicol Chem; 2017 Feb; 36(2):329-336. PubMed ID: 27463891 [TBL] [Abstract][Full Text] [Related]
3. Effects of mineral surfaces on pyrene partitioning to well-characterized humic substances. Hur J; Schlautman MA J Environ Qual; 2004; 33(5):1733-42. PubMed ID: 15356233 [TBL] [Abstract][Full Text] [Related]
4. Influence of an aquatic humic acid on the bioconcentration of selected compounds in Daphnia magna. Schramm KW; Behechti A; Beck B; Kettrup A Ecotoxicol Environ Saf; 1998 Sep; 41(1):73-6. PubMed ID: 9756692 [TBL] [Abstract][Full Text] [Related]
5. Evaluating the sorption of organophosphate esters to different sourced humic acids and its effects on the toxicity to Daphnia magna. Pang L; Liu J; Yin Y; Shen M Environ Toxicol Chem; 2013 Dec; 32(12):2755-61. PubMed ID: 23966232 [TBL] [Abstract][Full Text] [Related]
6. Environmental condition-dependent effects of aquatic humic substances on the distribution of phenanthrene in microplastic-contaminated aquatic systems. Zafar R; Lee YK; Li X; Hur J Environ Pollut; 2024 May; 348():123809. PubMed ID: 38493869 [TBL] [Abstract][Full Text] [Related]
7. Volume and composition of semi-adsorbed stationary phases in hydrophilic interaction liquid chromatography. Comparison of water adsorption in common stationary phases and eluents. Redón L; Subirats X; Rosés M J Chromatogr A; 2021 Oct; 1656():462543. PubMed ID: 34571282 [TBL] [Abstract][Full Text] [Related]
8. Change in adsorption behavior of aquatic humic substances on microplastic through biotic and abiotic aging processes. Zafar R; Bang TH; Lee YK; Begum MS; Rabani I; Hong S; Hur J Sci Total Environ; 2022 Oct; 843():157010. PubMed ID: 35772558 [TBL] [Abstract][Full Text] [Related]
9. Hydrophilic interaction chromatography coupled to tandem mass spectrometry in the presence of hydrophilic ion-pairing reagents for the separation of nucleosides and nucleotide mono-, di- and triphosphates. Mateos-Vivas M; Rodríguez-Gonzalo E; García-Gómez D; Carabias-Martínez R J Chromatogr A; 2015 Oct; 1414():129-37. PubMed ID: 26341591 [TBL] [Abstract][Full Text] [Related]
10. Insight into the hydrophilic interaction liquid chromatographic retention behaviors of hydrophilic compounds on different stationary phases. Gao W; Liu XL; Wang Y; Liang C; Lian HZ; Qiao JQ Talanta; 2020 Nov; 219():121363. PubMed ID: 32887085 [TBL] [Abstract][Full Text] [Related]
11. Determining octanol-water partition coefficients for extremely hydrophobic chemicals by combining "slow stirring" and solid-phase microextraction. Jonker MT Environ Toxicol Chem; 2016 Jun; 35(6):1371-7. PubMed ID: 26550770 [TBL] [Abstract][Full Text] [Related]
12. Micellar electrokinetic capillary chromatography as a method for determination of n-octanol/water partition coefficients of pesticides. Dinelli G; Mallegni R; Vicari A Electrophoresis; 1997 Feb; 18(2):214-9. PubMed ID: 9080128 [TBL] [Abstract][Full Text] [Related]
13. Green chromatography separation of analytes of greatly differing properties using a polyethylene glycol stationary phase and a low-toxic water-based mobile phase. Šatínský D; Brabcová I; Maroušková A; Chocholouš P; Solich P Anal Bioanal Chem; 2013 Jul; 405(18):6105-15. PubMed ID: 23657456 [TBL] [Abstract][Full Text] [Related]
14. Measuring log K Xiang Q; Shan G; Wu W; Jin H; Zhu L Environ Pollut; 2018 Nov; 242(Pt B):1283-1290. PubMed ID: 30121482 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the heterogeneity within bulk sediment humic substances from a stream and reservoir via selected operational descriptors. Hur J; Kim G Chemosphere; 2009 Apr; 75(4):483-90. PubMed ID: 19178928 [TBL] [Abstract][Full Text] [Related]
16. Hydrophilic interaction liquid chromatography method for measuring the composition of aquatic humic substances. Wang RQ; Gutierrez L; Choon NS; Croué JP Anal Chim Acta; 2015 Jan; 853():608-616. PubMed ID: 25467510 [TBL] [Abstract][Full Text] [Related]
17. Influence of chemical characteristics of humic substances on the partition coefficient of a chlorinated dioxin. Tanaka F; Fukushima M; Kikuchi A; Yabuta H; Ichikawa H; Tatsumi K Chemosphere; 2005 Mar; 58(10):1319-26. PubMed ID: 15686749 [TBL] [Abstract][Full Text] [Related]
18. Hydrophobic Sorption Properties of an Extended Series of Anionic Per- and Polyfluoroalkyl Substances Characterized by C Endo S; Matsuzawa S Environ Sci Technol; 2024 Apr; 58(17):7628-7635. PubMed ID: 38646668 [TBL] [Abstract][Full Text] [Related]
19. Prediction of Apolar Compound Sorption to Aquatic Natural Organic Matter Accounting for Natural Organic Matter Hydrophobicity Using Aqueous Two-Phase Systems. Liu K; Fu H; Zhu D; Qu X Environ Sci Technol; 2019 Jul; 53(14):8127-8135. PubMed ID: 31264416 [TBL] [Abstract][Full Text] [Related]
20. Using two-dimensional correlation size exclusion chromatography (2D-CoSEC) to explore the size-dependent heterogeneity of humic substances for copper binding. Lee YK; Hur J Environ Pollut; 2017 Aug; 227():490-497. PubMed ID: 28494401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]