These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35772570)

  • 1. Modelling the fitness landscapes of a SCRaMbLEd yeast genome.
    Yang B; Misirli G; Wipat A; Hallinan J
    Biosystems; 2022 Sep; 219():104730. PubMed ID: 35772570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale genomic rearrangements boost SCRaMbLE in Saccharomyces cerevisiae.
    Cheng L; Zhao S; Li T; Hou S; Luo Z; Xu J; Yu W; Jiang S; Monti M; Schindler D; Zhang W; Hou C; Ma Y; Cai Y; Boeke JD; Dai J
    Nat Commun; 2024 Jan; 15(1):770. PubMed ID: 38278805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SCRaMbLE-in: A Fast and Efficient Method to Diversify and Improve the Yields of Heterologous Pathways in Synthetic Yeast.
    Swidah R; Auxillos J; Liu W; Jones S; Chan TF; Dai J; Cai Y
    Methods Mol Biol; 2020; 2205():305-327. PubMed ID: 32809206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Saccharomyces cerevisiae SCRaMbLE system and genome minimization.
    Dymond J; Boeke J
    Bioeng Bugs; 2012; 3(3):168-71. PubMed ID: 22572789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SCRaMbLE generates evolved yeasts with increased alkali tolerance.
    Ma L; Li Y; Chen X; Ding M; Wu Y; Yuan YJ
    Microb Cell Fact; 2019 Mar; 18(1):52. PubMed ID: 30857530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design.
    Dymond JS; Richardson SM; Coombes CE; Babatz T; Muller H; Annaluru N; Blake WJ; Schwerzmann JW; Dai J; Lindstrom DL; Boeke AC; Gottschling DE; Chandrasegaran S; Bader JS; Boeke JD
    Nature; 2011 Sep; 477(7365):471-6. PubMed ID: 21918511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes.
    Shen Y; Stracquadanio G; Wang Y; Yang K; Mitchell LA; Xue Y; Cai Y; Chen T; Dymond JS; Kang K; Gong J; Zeng X; Zhang Y; Li Y; Feng Q; Xu X; Wang J; Wang J; Yang H; Boeke JD; Bader JS
    Genome Res; 2016 Jan; 26(1):36-49. PubMed ID: 26566658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deciphering the Genic Basis of Yeast Fitness Variation by Simultaneous Forward and Reverse Genetics.
    Maclean CJ; Metzger BPH; Yang JR; Ho WC; Moyers B; Zhang J
    Mol Biol Evol; 2017 Oct; 34(10):2486-2502. PubMed ID: 28472365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing with living systems in the synthetic yeast project.
    Szymanski E; Calvert J
    Nat Commun; 2018 Jul; 9(1):2950. PubMed ID: 30054478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Optimized Genotyping Workflow for Identifying Highly SCRaMbLEd Synthetic Yeasts.
    Lindeboom TA; Sanchez Olmos MDC; Schulz K; Brinkmann CK; Ramírez Rojas AA; Hochrein L; Schindler D
    ACS Synth Biol; 2024 Apr; 13(4):1116-1127. PubMed ID: 38597458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing eukaryotic genome functions with synthetic chromosomes.
    Luo Z; Hoffmann SA; Jiang S; Cai Y; Dai J
    Exp Cell Res; 2020 May; 390(1):111936. PubMed ID: 32165165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic analysis of genome-wide fitness data in yeast reveals novel gene function and drug action.
    Hillenmeyer ME; Ericson E; Davis RW; Nislow C; Koller D; Giaever G
    Genome Biol; 2010; 11(3):R30. PubMed ID: 20226027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovering and genotyping genomic structural variations by yeast genome synthesis and inducible evolution.
    Chen S; Xie ZX; Yuan YJ
    FEMS Yeast Res; 2020 Mar; 20(2):. PubMed ID: 32188997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local Fitness Landscapes Predict Yeast Evolutionary Dynamics in Directionally Changing Environments.
    Gorter FA; Aarts MGM; Zwaan BJ; de Visser JAGM
    Genetics; 2018 Jan; 208(1):307-322. PubMed ID: 29141909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic dissection of key factors governing recombination outcomes by GCE-SCRaMbLE.
    Zhang H; Fu X; Gong X; Wang Y; Zhang H; Zhao Y; Shen Y
    Nat Commun; 2022 Oct; 13(1):5836. PubMed ID: 36192484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SCRaMbLE does the yeast genome shuffle.
    Jones S
    Nat Biotechnol; 2018 Jun; 36(6):503. PubMed ID: 29874209
    [No Abstract]   [Full Text] [Related]  

  • 17. Fitness benefits of loss of heterozygosity in
    Lancaster SM; Payen C; Smukowski Heil C; Dunham MJ
    Genome Res; 2019 Oct; 29(10):1685-1692. PubMed ID: 31548357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ring synthetic chromosome V SCRaMbLE.
    Wang J; Xie ZX; Ma Y; Chen XR; Huang YQ; He B; Bin Jia ; Li BZ; Yuan YJ
    Nat Commun; 2018 Sep; 9(1):3783. PubMed ID: 30224715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast.
    Hochrein L; Mitchell LA; Schulz K; Messerschmidt K; Mueller-Roeber B
    Nat Commun; 2018 May; 9(1):1931. PubMed ID: 29789561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into molecular evolution from yeast genomics.
    Zarin T; Moses AM
    Yeast; 2014 Jul; 31(7):233-41. PubMed ID: 24760744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.