These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 35772613)
21. Mechanistic Models for USP2 Dissolution Apparatus, Including Fluid Hydrodynamics and Sedimentation. Pepin X; Goetschy M; Abrahmsén-Alami S J Pharm Sci; 2022 Jan; 111(1):185-196. PubMed ID: 34666045 [TBL] [Abstract][Full Text] [Related]
22. Taking paclitaxel coated balloons to a higher level: Predicting coating dissolution kinetics, tissue retention and dosing dynamics. Tzafriri AR; Parikh SA; Edelman ER J Control Release; 2019 Sep; 310():94-102. PubMed ID: 31430500 [TBL] [Abstract][Full Text] [Related]
23. Pulmonary Dissolution of Poorly Soluble Compounds Studied in an ex Vivo Rat Lung Model. Eriksson J; Thörn H; Sjögren E; Holmstén L; Rubin K; Lennernäs H Mol Pharm; 2019 Jul; 16(7):3053-3064. PubMed ID: 31136181 [TBL] [Abstract][Full Text] [Related]
24. Bridging in vitro dissolution and in vivo exposure for acalabrutinib. Part I. Mechanistic modelling of drug product dissolution to derive a P-PSD for PBPK model input. Pepin XJH; Sanderson NJ; Blanazs A; Grover S; Ingallinera TG; Mann JC Eur J Pharm Biopharm; 2019 Sep; 142():421-434. PubMed ID: 31306753 [TBL] [Abstract][Full Text] [Related]
25. Dissolution of theophylline monohydrate and anhydrous theophylline in buffer solutions. de Smidt JH; Fokkens JG; Grijseels H; Crommelin DJ J Pharm Sci; 1986 May; 75(5):497-501. PubMed ID: 3735090 [TBL] [Abstract][Full Text] [Related]
26. Improving Dissolution Behavior and Oral Absorption of Drugs with pH-Dependent Solubility Using pH Modifiers: A Physiologically Realistic Mass Transport Analysis. Salehi N; Kuminek G; Al-Gousous J; Sperry DC; Greenwood DE; Waltz NM; Amidon GL; Ziff RM; Amidon GE Mol Pharm; 2021 Sep; 18(9):3326-3341. PubMed ID: 34428047 [TBL] [Abstract][Full Text] [Related]
27. Effects of tablet formulation and subsequent film coating on the supersaturated dissolution behavior of amorphous solid dispersions. Sakai T; Hirai D; Kimura SI; Iwao Y; Itai S Int J Pharm; 2018 Apr; 540(1-2):171-177. PubMed ID: 29447848 [TBL] [Abstract][Full Text] [Related]
28. Development of a Physiologically Relevant Population Pharmacokinetic in Vitro-in Vivo Correlation Approach for Designing Extended-Release Oral Dosage Formulation. Kim TH; Shin S; Bulitta JB; Youn YS; Yoo SD; Shin BS Mol Pharm; 2017 Jan; 14(1):53-65. PubMed ID: 27809538 [TBL] [Abstract][Full Text] [Related]
29. Artemisinin-Polyvinylpyrrolidone Composites Prepared by Evaporative Precipitation of Nanosuspension for Dissolution Enhancement. Kakran M; Sahoo NG; Li L; Judeh Z; Panda P J Biomater Sci Polym Ed; 2011; 22(1-3):363-78. PubMed ID: 20566035 [TBL] [Abstract][Full Text] [Related]
30. Evaluating the dissolution behavior of zinc-complexed protein suspensions by computer modeling and simulation. Prabhu S; Jacknowitz AI; Stout PJ Drug Dev Ind Pharm; 2002 Jul; 28(6):703-9. PubMed ID: 12149963 [TBL] [Abstract][Full Text] [Related]
31. Dissolution process analysis using model-free Noyes-Whitney integral equation. Hattori Y; Haruna Y; Otsuka M Colloids Surf B Biointerfaces; 2013 Feb; 102():227-31. PubMed ID: 23010115 [TBL] [Abstract][Full Text] [Related]
32. A novel mathematical model considering change of diffusion coefficient for predicting dissolution behavior of acetaminophen from wax matrix dosage form. Nitanai Y; Agata Y; Iwao Y; Itai S Int J Pharm; 2012 May; 428(1-2):82-90. PubMed ID: 22405986 [TBL] [Abstract][Full Text] [Related]
33. Disintegration rate and properties of active pharmaceutical ingredient particles as determined from the dissolution time profile of a pharmaceutical formulation: an inverse problem. Horkovics-Kovats S J Pharm Sci; 2014 Feb; 103(2):456-64. PubMed ID: 24338791 [TBL] [Abstract][Full Text] [Related]
34. Effect of Extent of Supersaturation on the Evolution of Kinetic Solubility Profiles. Han YR; Lee PI Mol Pharm; 2017 Jan; 14(1):206-220. PubMed ID: 28043130 [TBL] [Abstract][Full Text] [Related]
35. In vitro dissolution models for the prediction of in vivo performance of an oral mesoporous silica formulation. McCarthy CA; Faisal W; O'Shea JP; Murphy C; Ahern RJ; Ryan KB; Griffin BT; Crean AM J Control Release; 2017 Mar; 250():86-95. PubMed ID: 28132935 [TBL] [Abstract][Full Text] [Related]
36. Theoretical and experimental study on theophylline release from stearic acid cylindrical delivery systems. Grassi M; Voinovich D; Franceschinis E; Perissutti B; Filipovic-Grcic J J Control Release; 2003 Oct; 92(3):275-89. PubMed ID: 14568409 [TBL] [Abstract][Full Text] [Related]
37. Dissolution kinetics of volatile organic compound vapors in water: An integrated experimental and computational study. Mahmoodlu MG; Pontedeiro EM; Pérez Guerrero JS; Raoof A; Majid Hassanizadeh S; van Genuchten MT J Contam Hydrol; 2017 Jan; 196():43-51. PubMed ID: 27993467 [TBL] [Abstract][Full Text] [Related]
38. Mass transport in dissolution kinetics. II: Convective diffusion to assess role of viscosity under conditions of gravitational flow. Shah AC; Nelson KG J Pharm Sci; 1987 Dec; 76(12):910-3. PubMed ID: 3440936 [TBL] [Abstract][Full Text] [Related]
39. In vitro release testing of matrices based on starch-methyl methacrylate copolymers: effect of tablet crushing force, dissolution medium pH and stirring rate. Ferrero C; Jiménez-Castellanos MR Int J Pharm; 2014 Jan; 461(1-2):270-9. PubMed ID: 24333902 [TBL] [Abstract][Full Text] [Related]
40. Theoretical dissolution model of poly-disperse drug particles in biorelevant media. Okazaki A; Mano T; Sugano K J Pharm Sci; 2008 May; 97(5):1843-52. PubMed ID: 17828749 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]