These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 35773261)
1. On-chip bacterial foraging training in silicon photonic circuits for projection-enabled nonlinear classification. Cong G; Yamamoto N; Inoue T; Maegami Y; Ohno M; Kita S; Namiki S; Yamada K Nat Commun; 2022 Jun; 13(1):3261. PubMed ID: 35773261 [TBL] [Abstract][Full Text] [Related]
2. Nonlinear germanium-silicon photodiode for activation and monitoring in photonic neuromorphic networks. Shi Y; Ren J; Chen G; Liu W; Jin C; Guo X; Yu Y; Zhang X Nat Commun; 2022 Oct; 13(1):6048. PubMed ID: 36229465 [TBL] [Abstract][Full Text] [Related]
3. Programmable low-threshold optical nonlinear activation functions for photonic neural networks. Huang Y; Wang W; Qiao L; Hu X; Chu T Opt Lett; 2022 Apr; 47(7):1810-1813. PubMed ID: 35363741 [TBL] [Abstract][Full Text] [Related]
4. Arbitrary reconfiguration of universal silicon photonic circuits by bacteria foraging algorithm to achieve reconfigurable photonic digital-to-analog conversion. Cong G; Yamamoto N; Inoue T; Okano M; Maegami Y; Ohno M; Yamada K Opt Express; 2019 Sep; 27(18):24914-24922. PubMed ID: 31510372 [TBL] [Abstract][Full Text] [Related]
5. On-chip photonic diffractive optical neural network based on a spatial domain electromagnetic propagation model. Fu T; Zang Y; Huang H; Du Z; Hu C; Chen M; Yang S; Chen H Opt Express; 2021 Sep; 29(20):31924-31940. PubMed ID: 34615274 [TBL] [Abstract][Full Text] [Related]
6. Automatic extraction of cancer registry reportable information from free-text pathology reports using multitask convolutional neural networks. Alawad M; Gao S; Qiu JX; Yoon HJ; Blair Christian J; Penberthy L; Mumphrey B; Wu XC; Coyle L; Tourassi G J Am Med Inform Assoc; 2020 Jan; 27(1):89-98. PubMed ID: 31710668 [TBL] [Abstract][Full Text] [Related]
7. Transferability of artificial neural networks for clinical document classification across hospitals: A case study on abnormality detection from radiology reports. Hassanzadeh H; Nguyen A; Karimi S; Chu K J Biomed Inform; 2018 Sep; 85():68-79. PubMed ID: 30026067 [TBL] [Abstract][Full Text] [Related]
9. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction. Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253 [TBL] [Abstract][Full Text] [Related]
10. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets. Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673 [TBL] [Abstract][Full Text] [Related]
11. MXene-Nanoflakes-Enabled All-Optical Nonlinear Activation Function for On-Chip Photonic Deep Neural Networks. Hazan A; Ratzker B; Zhang D; Katiyi A; Sokol M; Gogotsi Y; Karabchevsky A Adv Mater; 2023 Mar; 35(11):e2210216. PubMed ID: 36641139 [TBL] [Abstract][Full Text] [Related]
12. MACHINE LEARNING ALGORITHMS FOR IDENTIFICATION OF ABNORMAL GLOW CURVES AND ASSOCIATED ABNORMALITY IN CaSO4:DY-BASED PERSONNEL MONITORING DOSIMETERS. Pathan MS; Pradhan SM; Selvam TP Radiat Prot Dosimetry; 2020 Sep; 190(3):342-351. PubMed ID: 32857133 [TBL] [Abstract][Full Text] [Related]
13. Machine learning methods for prediction of food effects on bioavailability: A comparison of support vector machines and artificial neural networks. Bennett-Lenane H; Griffin BT; O'Shea JP Eur J Pharm Sci; 2022 Jan; 168():106018. PubMed ID: 34563654 [TBL] [Abstract][Full Text] [Related]
14. Machine learning for evolutive lymphoma and residual masses recognition in whole body diffusion weighted magnetic resonance images. Ferjaoui R; Cherni MA; Boujnah S; Kraiem NEH; Kraiem T Comput Methods Programs Biomed; 2021 Sep; 209():106320. PubMed ID: 34390938 [TBL] [Abstract][Full Text] [Related]
15. A comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classification. Mendez KM; Reinke SN; Broadhurst DI Metabolomics; 2019 Nov; 15(12):150. PubMed ID: 31728648 [TBL] [Abstract][Full Text] [Related]
16. Compare the performance of multiple binary classification models in microbial high-throughput sequencing datasets. Xu N; Zhang Z; Shen Y; Zhang Q; Liu Z; Yu Y; Wang Y; Lei C; Ke M; Qiu D; Lu T; Chen Y; Xiong J; Qian H Sci Total Environ; 2022 Sep; 837():155807. PubMed ID: 35537509 [TBL] [Abstract][Full Text] [Related]
17. Machine-learning models for activity class prediction: A comparative study of feature selection and classification algorithms. Chong J; Tjurin P; Niemelä M; Jämsä T; Farrahi V Gait Posture; 2021 Sep; 89():45-53. PubMed ID: 34225240 [TBL] [Abstract][Full Text] [Related]
18. Classification with a disordered dopant-atom network in silicon. Chen T; van Gelder J; van de Ven B; Amitonov SV; de Wilde B; Ruiz Euler HC; Broersma H; Bobbert PA; Zwanenburg FA; van der Wiel WG Nature; 2020 Jan; 577(7790):341-345. PubMed ID: 31942054 [TBL] [Abstract][Full Text] [Related]
19. Classification of Benign and Malignant Breast Masses on Mammograms for Large Datasets using Core Vector Machines. Jebamony J; Jacob D Curr Med Imaging; 2020; 16(6):703-710. PubMed ID: 32723242 [TBL] [Abstract][Full Text] [Related]
20. Machine learning goes wild: Using data from captive individuals to infer wildlife behaviours. Rast W; Kimmig SE; Giese L; Berger A PLoS One; 2020; 15(5):e0227317. PubMed ID: 32369485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]