These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35773322)

  • 1. Superhydrophobic magnetic sorbent via surface modification of banded iron formation for oily water treatment.
    Farahat M; Sobhy A; Sanad MMS
    Sci Rep; 2022 Jun; 12(1):11016. PubMed ID: 35773322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly recyclable superhydrophobic sponge suitable for the selective sorption of high viscosity oil from water.
    Wang J; Geng G
    Mar Pollut Bull; 2015 Aug; 97(1-2):118-124. PubMed ID: 26092604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alginate modified graphitic carbon nitride composite hydrogels for efficient removal of Pb(II), Ni(II) and Cu(II) from water.
    Shen W; An QD; Xiao ZY; Zhai SR; Hao JA; Tong Y
    Int J Biol Macromol; 2020 Apr; 148():1298-1306. PubMed ID: 31739024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable construction of multifunctional superhydrophobic coating with ultra-stable efficiency for oily water treatment.
    Jiang YH; Zhang YQ; Wang ZH; An QD; Xiao ZY; Xiao LP; Zhai SR
    J Colloid Interface Sci; 2022 Dec; 628(Pt A):356-365. PubMed ID: 35932672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium Carbonate@silica Composite with Superhydrophobic Properties.
    Ma Y; Tian P; Bounmyxay M; Zeng Y; Wang N
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and application of magnetic biochar for the removal of phosphorus from water.
    Silva TCF; VergÜtz L; Pacheco AA; Melo LF; Renato NS; Melo LCA
    An Acad Bras Cienc; 2020; 92(3):e20190440. PubMed ID: 33206798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile fabrication of magnetic chitosan beads of fast kinetics and high capacity for copper removal.
    Jiang W; Wang W; Pan B; Zhang Q; Zhang W; Lv L
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3421-6. PubMed ID: 24524391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly-NIPAM/Fe
    Abdullah TA; Juzsakova T; Le PC; Kułacz K; Salman AD; Rasheed RT; Mallah MA; Varga B; Mansoor H; Mako E; Zsirka B; Nadda AK; Nguyen XC; Nguyen DD
    Environ Pollut; 2022 Aug; 306():119372. PubMed ID: 35533957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green technological approach to synthesis hydrophobic stable crystalline calcite particles with one-pot synthesis for oil-water separation during oil spill cleanup.
    Wu MN; Maity JP; Bundschuh J; Li CF; Lee CR; Hsu CM; Lee WC; Huang CH; Chen CY
    Water Res; 2017 Oct; 123():332-344. PubMed ID: 28683374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.
    Chowdhury S; Balasubramanian R
    Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adhesion-Shielding based synthesis of interfacially active magnetic Janus nanoparticles.
    Yang F; He X; Tan W; Liu G; Yi T; Lu Q; Wei X; Xie H; Long Q; Wang G; Guo C; Pensini E; Lu Z; Liu Q; Xu Z
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1741-1753. PubMed ID: 34598031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile and simple fabrication of superhydrophobic and superoleophilic MS/PDA/DT sponge for efficient oil/water separation.
    Yang J; Jia Y; Li B; Jiao J
    Environ Technol; 2022 Nov; 43(26):4092-4101. PubMed ID: 34115553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-inspired durable, superhydrophobic magnetic particles for oil/water separation.
    Zhang L; Li L; Dang ZM
    J Colloid Interface Sci; 2016 Feb; 463():266-71. PubMed ID: 26550784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake of arsenate by an alginate-encapsulated magnetic sorbent: process performance and characterization of adsorption chemistry.
    Lim SF; Zheng YM; Zou SW; Chen JP
    J Colloid Interface Sci; 2009 May; 333(1):33-9. PubMed ID: 19223042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green synthesis of reusable super-paramagnetic diatomite for aqueous nickel (II) removal.
    Wu S; Wang C; Jin Y; Zhou G; Zhang L; Yu P; Sun L
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):1179-1190. PubMed ID: 32950834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of a Double Core-Shell Particle-Based Magnetic Nanocomposite for Effective Adsorption-Controlled Release of Drugs.
    Hussain M; Rehan T; Goh KW; Shah SI; Khan A; Ming LC; Shah N
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nigella sativa seed based nanohybrid composite-Fe
    Siddiqui SI; Zohra F; Chaudhry SA
    Environ Res; 2019 Nov; 178():108667. PubMed ID: 31454728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Construction and Fabrication of a Superhydrophobic and Super Oleophilic Stainless Steel Mesh for Separation of Water and Oil.
    Sun Y; Ke Z; Shen C; Wei Q; Sun R; Yang W; Yin Z
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant-loaded graphene oxide sponge for the simultaneous removal of Cu
    Kuang Y; Yang R; Zhang Z; Fang J; Xing M; Wu D
    Chemosphere; 2019 Dec; 236():124416. PubMed ID: 31545207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Key factors for optimum performance in phosphate removal from contaminated water by a Fe-Mg-La tri-metal composite sorbent.
    Yu Y; Paul Chen J
    J Colloid Interface Sci; 2015 May; 445():303-311. PubMed ID: 25635604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.