These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 35773464)
1. Radiative flow of viscous nano-fluid over permeable stretched swirling disk with generalized slip. Hussain M; Rasool M; Mehmood A Sci Rep; 2022 Jun; 12(1):11038. PubMed ID: 35773464 [TBL] [Abstract][Full Text] [Related]
2. Enhanced heat transfer analysis on Ag-Al[Formula: see text]O[Formula: see text]/water hybrid magneto-convective nanoflow. Ragavi M; Poornima T Discov Nano; 2024 Feb; 19(1):31. PubMed ID: 38386148 [TBL] [Abstract][Full Text] [Related]
3. Comparative study on heat transfer and friction drag in the flow of various hybrid nanofluids effected by aligned magnetic field and nonlinear radiation. Khan MR; Li M; Mao S; Ali R; Khan S Sci Rep; 2021 Feb; 11(1):3691. PubMed ID: 33574375 [TBL] [Abstract][Full Text] [Related]
4. A proceeding to numerical study of mathematical model of bioconvective Maxwell nanofluid flow through a porous stretching surface with nield/convective boundary constraints. Imran M; Basit MA; Yasmin S; Khan SA; Elagan SK; Akgül A; Hassan AM Sci Rep; 2024 Jan; 14(1):1873. PubMed ID: 38253571 [TBL] [Abstract][Full Text] [Related]
5. Entropy analysis on EMHD 3D micropolar tri-hybrid nanofluid flow of solar radiative slendering sheet by a machine learning algorithm. Jakeer S; Basha HT; Reddy SRR; Abbas M; Alqahtani MS; Loganathan K; Anand AV Sci Rep; 2023 Nov; 13(1):19168. PubMed ID: 37932305 [TBL] [Abstract][Full Text] [Related]
7. Thermal analysis for [Formula: see text]-sodium alginate magnetized Jeffrey's nanofluid flow past a stretching sheet embedded in a porous medium. Shahzad F; Jamshed W; Nisar KS; Nasir NAAM; Safdar R; Abdel-Aty AH; Yahia IS Sci Rep; 2022 Feb; 12(1):3287. PubMed ID: 35228571 [TBL] [Abstract][Full Text] [Related]
8. Impacts of entropy generation in second-grade fuzzy hybrid nanofluids on exponentially permeable stretching/shrinking surface. Zulqarnain RM; Nadeem M; Siddique I; Mansha A; Ghallab AS; Samar M Sci Rep; 2023 Dec; 13(1):22132. PubMed ID: 38092807 [TBL] [Abstract][Full Text] [Related]
9. Inspection of thermal jump conditions on nanofluids with nanoparticles and multiple slip effects. Raza Shah Naqvi SM; Farooq U; Waqas H; Muhammad T; Alshehri A Sci Rep; 2022 Apr; 12(1):5586. PubMed ID: 35379816 [TBL] [Abstract][Full Text] [Related]
10. Insight into the dynamics of heat and mass transfer in nanofluid flow with linear/nonlinear mixed convection, thermal radiation, and activation energy effects over the rotating disk. Kanwal S; Shah SAA; Bariq A; Ali B; Ragab AE; Az-Zo'bi EA Sci Rep; 2023 Dec; 13(1):23031. PubMed ID: 38155170 [TBL] [Abstract][Full Text] [Related]
11. Dissipative MHD free convective nanofluid flow past a vertical cone under radiative chemical reaction with mass flux. Ragulkumar E; Palani G; Sambath P; Chamkha AJ Sci Rep; 2023 Feb; 13(1):2878. PubMed ID: 36808145 [TBL] [Abstract][Full Text] [Related]
12. Numerical study of nano-biofilm stagnation flow from a nonlinear stretching/shrinking surface with variable nanofluid and bioconvection transport properties. Alsenafi A; Bég OA; Ferdows M; Bég TA; Kadir A Sci Rep; 2021 May; 11(1):9877. PubMed ID: 33972577 [TBL] [Abstract][Full Text] [Related]
13. Entropy generation and activation energy mechanism in nonlinear radiative flow of Sisko nanofluid: rotating disk. Ijaz M; Ayub M; Khan H Heliyon; 2019 Jun; 5(6):e01863. PubMed ID: 31194133 [TBL] [Abstract][Full Text] [Related]
14. Agrawal Axisymmetric Rotational Stagnation-Point Flow of a Water-Based Molybdenum Disulfide-Graphene Oxide Hybrid Nanofluid and Heat Transfer Impinging on a Radially Permeable Moving Rotating Disk. Khan U; Zaib A; Ishak A; Waini I; Abdel-Aty AH; Sheremet MA; Yahia IS; Zahran HY; Galal AM Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269275 [TBL] [Abstract][Full Text] [Related]
15. Impact of Smoluchowski Temperature and Maxwell Velocity Slip Conditions on Axisymmetric Rotated Flow of Hybrid Nanofluid past a Porous Moving Rotating Disk. Khan U; Zaib A; Waini I; Ishak A; Sherif EM; Xia WF; Muhammad N Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055293 [TBL] [Abstract][Full Text] [Related]
16. Exploring the heat transfer and entropy generation of Ag/Fe[Formula: see text]O[Formula: see text]-blood nanofluid flow in a porous tube: a collocation solution. Basha HT; Sivaraj R Eur Phys J E Soft Matter; 2021 Mar; 44(3):31. PubMed ID: 33721123 [TBL] [Abstract][Full Text] [Related]
17. Unsteady hybrid nanofluid ([Formula: see text], MWCNTs/blood) flow between two rotating stretchable disks with chemical reaction and activation energy under the influence of convective boundaries. Qayyum M; Afzal S; Ali MR; Sohail M; Imran N; Chambashi G Sci Rep; 2023 Apr; 13(1):6151. PubMed ID: 37061526 [TBL] [Abstract][Full Text] [Related]
18. Heat transfer analysis of fractional model of couple stress Casson tri-hybrid nanofluid using dissimilar shape nanoparticles in blood with biomedical applications. Arif M; Di Persio L; Kumam P; Watthayu W; Akgül A Sci Rep; 2023 Mar; 13(1):4596. PubMed ID: 36944650 [TBL] [Abstract][Full Text] [Related]
19. Numerical simulations of heat generation, thermal radiation and thermal transport in water-based nanoparticles: OHAM study. Waseem F; Sohail M; Lone SA; Chambashi G Sci Rep; 2023 Sep; 13(1):15650. PubMed ID: 37730737 [TBL] [Abstract][Full Text] [Related]
20. Heat transfer analysis of Maxwell tri-hybridized nanofluid through Riga wedge with fuzzy volume fraction. Zulqarnain RM; Nadeem M; Siddique I; Ahmad H; Askar S; Samar M Sci Rep; 2023 Oct; 13(1):18238. PubMed ID: 37880349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]