BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35773471)

  • 1. Variational autoencoders learn transferrable representations of metabolomics data.
    Gomari DP; Schweickart A; Cerchietti L; Paietta E; Fernandez H; Al-Amin H; Suhre K; Krumsiek J
    Commun Biol; 2022 Jun; 5(1):645. PubMed ID: 35773471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Overview of Variational Autoencoders for Source Separation, Finance, and Bio-Signal Applications.
    Singh A; Ogunfunmi T
    Entropy (Basel); 2021 Dec; 24(1):. PubMed ID: 35052081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attri-VAE: Attribute-based interpretable representations of medical images with variational autoencoders.
    Cetin I; Stephens M; Camara O; González Ballester MA
    Comput Med Imaging Graph; 2023 Mar; 104():102158. PubMed ID: 36638626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explaining deep learning-based representations of resting state functional connectivity data: focusing on interpreting nonlinear patterns in autism spectrum disorder.
    Kim YG; Ravid O; Zheng X; Kim Y; Neria Y; Lee S; He X; Zhu X
    Front Psychiatry; 2024; 15():1397093. PubMed ID: 38832332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressing gene expression data using multiple latent space dimensionalities learns complementary biological representations.
    Way GP; Zietz M; Rubinetti V; Himmelstein DS; Greene CS
    Genome Biol; 2020 May; 21(1):109. PubMed ID: 32393369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting drug polypharmacology from cell morphology readouts using variational autoencoder latent space arithmetic.
    Chow YL; Singh S; Carpenter AE; Way GP
    PLoS Comput Biol; 2022 Feb; 18(2):e1009888. PubMed ID: 35213530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive variational autoencoder for learning robust representations of time-series data.
    Wang JH; Tsin D; Engel TA
    ArXiv; 2023 Dec; ():. PubMed ID: 38168462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biologically informed variational autoencoders allow predictive modeling of genetic and drug-induced perturbations.
    Doncevic D; Herrmann C
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37326971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation-invariant autoencoders learn robust representations for shape profiling of cells and organelles.
    Burgess J; Nirschl JJ; Zanellati MC; Lozano A; Cohen S; Yeung-Levy S
    Nat Commun; 2024 Feb; 15(1):1022. PubMed ID: 38310122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameter tuning is a key part of dimensionality reduction via deep variational autoencoders for single cell RNA transcriptomics.
    Hu Q; Greene CS
    Pac Symp Biocomput; 2019; 24():362-373. PubMed ID: 30963075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Mixture Generative Autoencoders.
    Ye F; Bors AG
    IEEE Trans Neural Netw Learn Syst; 2022 Oct; 33(10):5789-5803. PubMed ID: 33872161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracting a biologically latent space of lung cancer epigenetics with variational autoencoders.
    Wang Z; Wang Y
    BMC Bioinformatics; 2019 Nov; 20(Suppl 18):568. PubMed ID: 31760935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ScInfoVAE: interpretable dimensional reduction of single cell transcription data with variational autoencoders and extended mutual information regularization.
    Pan W; Long F; Pan J
    BioData Min; 2023 Jun; 16(1):17. PubMed ID: 37301826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic control of collective variables learned from variational autoencoders.
    Monroe JI; Shen VK
    J Chem Phys; 2022 Sep; 157(9):094116. PubMed ID: 36075702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmarking variational AutoEncoders on cancer transcriptomics data.
    Eltager M; Abdelaal T; Charrout M; Mahfouz A; Reinders MJT; Makrodimitris S
    PLoS One; 2023; 18(10):e0292126. PubMed ID: 37796856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders.
    Way GP; Greene CS
    Pac Symp Biocomput; 2018; 23():80-91. PubMed ID: 29218871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variational image registration with learned prior using multi-stage VAEs.
    Hua Y; Xu K; Yang X
    Comput Biol Med; 2024 Jun; 178():108785. PubMed ID: 38925089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning Efficient, Collective Monte Carlo Moves with Variational Autoencoders.
    Monroe JI; Shen VK
    J Chem Theory Comput; 2022 Jun; 18(6):3622-3636. PubMed ID: 35613327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probabilistic Autoencoder Using Fisher Information.
    Zacherl J; Frank P; Enßlin TA
    Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using VAEs to Learn Latent Variables: Observations on Applications in cryo-EM.
    Edelberg DG; Lederman RR
    ArXiv; 2023 May; ():. PubMed ID: 36994155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.