These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 35773845)
1. Artificial Intelligence-Based Models for Predicting Vaccines Critical Tweets: An Experimental Study. Shah U; Ali H; Alam T; Househ M; Shah Z Stud Health Technol Inform; 2022 Jun; 295():209-212. PubMed ID: 35773845 [TBL] [Abstract][Full Text] [Related]
2. Applying Machine Learning to Identify Anti-Vaccination Tweets during the COVID-19 Pandemic. To QG; To KG; Huynh VN; Nguyen NTQ; Ngo DTN; Alley SJ; Tran ANQ; Tran ANP; Pham NTT; Bui TX; Vandelanotte C Int J Environ Res Public Health; 2021 Apr; 18(8):. PubMed ID: 33921539 [TBL] [Abstract][Full Text] [Related]
3. Identifying Potential Lyme Disease Cases Using Self-Reported Worldwide Tweets: Deep Learning Modeling Approach Enhanced With Sentimental Words Through Emojis. Laison EKE; Hamza Ibrahim M; Boligarla S; Li J; Mahadevan R; Ng A; Muthuramalingam V; Lee WY; Yin Y; Nasri BR J Med Internet Res; 2023 Oct; 25():e47014. PubMed ID: 37843893 [TBL] [Abstract][Full Text] [Related]
4. Understanding the vaccine stance of Italian tweets and addressing language changes through the COVID-19 pandemic: Development and validation of a machine learning model. Cheatham S; Kummervold PE; Parisi L; Lanfranchi B; Croci I; Comunello F; Rota MC; Filia A; Tozzi AE; Rizzo C; Gesualdo F Front Public Health; 2022; 10():948880. PubMed ID: 35968436 [TBL] [Abstract][Full Text] [Related]
5. Classification of Twitter Vaping Discourse Using BERTweet: Comparative Deep Learning Study. Baker W; Colditz JB; Dobbs PD; Mai H; Visweswaran S; Zhan J; Primack BA JMIR Med Inform; 2022 Jul; 10(7):e33678. PubMed ID: 35862172 [TBL] [Abstract][Full Text] [Related]
6. Leveraging machine learning approaches for predicting potential Lyme disease cases and incidence rates in the United States using Twitter. Boligarla S; Laison EKE; Li J; Mahadevan R; Ng A; Lin Y; Thioub MY; Huang B; Ibrahim MH; Nasri B BMC Med Inform Decis Mak; 2023 Oct; 23(1):217. PubMed ID: 37845666 [TBL] [Abstract][Full Text] [Related]
7. Fine-Tuning BERT Models to Classify Misinformation on Garlic and COVID-19 on Twitter. Kim MG; Kim M; Kim JH; Kim K Int J Environ Res Public Health; 2022 Apr; 19(9):. PubMed ID: 35564518 [TBL] [Abstract][Full Text] [Related]
8. Developing an Automatic System for Classifying Chatter About Health Services on Twitter: Case Study for Medicaid. Yang YC; Al-Garadi MA; Bremer W; Zhu JM; Grande D; Sarker A J Med Internet Res; 2021 May; 23(5):e26616. PubMed ID: 33938807 [TBL] [Abstract][Full Text] [Related]
9. Applying Multiple Data Collection Tools to Quantify Human Papillomavirus Vaccine Communication on Twitter. Massey PM; Leader A; Yom-Tov E; Budenz A; Fisher K; Klassen AC J Med Internet Res; 2016 Dec; 18(12):e318. PubMed ID: 27919863 [TBL] [Abstract][Full Text] [Related]
10. Artificial Intelligence and Radiology: A Social Media Perspective. Goldberg JE; Rosenkrantz AB Curr Probl Diagn Radiol; 2019; 48(4):308-311. PubMed ID: 30143386 [TBL] [Abstract][Full Text] [Related]
11. An Analysis of French-Language Tweets About COVID-19 Vaccines: Supervised Learning Approach. Sauvayre R; Vernier J; Chauvière C JMIR Med Inform; 2022 May; 10(5):e37831. PubMed ID: 35512274 [TBL] [Abstract][Full Text] [Related]
12. Comparison of pretrained transformer-based models for influenza and COVID-19 detection using social media text data in Saskatchewan, Canada. Tian Y; Zhang W; Duan L; McDonald W; Osgood N Front Digit Health; 2023; 5():1203874. PubMed ID: 37448834 [TBL] [Abstract][Full Text] [Related]
13. Pretrained Transformer Language Models Versus Pretrained Word Embeddings for the Detection of Accurate Health Information on Arabic Social Media: Comparative Study. Albalawi Y; Nikolov NS; Buckley J JMIR Form Res; 2022 Jun; 6(6):e34834. PubMed ID: 35767322 [TBL] [Abstract][Full Text] [Related]
14. ANTi-Vax: a novel Twitter dataset for COVID-19 vaccine misinformation detection. Hayawi K; Shahriar S; Serhani MA; Taleb I; Mathew SS Public Health; 2022 Feb; 203():23-30. PubMed ID: 35016072 [TBL] [Abstract][Full Text] [Related]
15. Developing Artificial Intelligence Models for Extracting Oncologic Outcomes from Japanese Electronic Health Records. Araki K; Matsumoto N; Togo K; Yonemoto N; Ohki E; Xu L; Hasegawa Y; Satoh D; Takemoto R; Miyazaki T Adv Ther; 2023 Mar; 40(3):934-950. PubMed ID: 36547809 [TBL] [Abstract][Full Text] [Related]
16. Public Perception Analysis of Tweets During the 2015 Measles Outbreak: Comparative Study Using Convolutional Neural Network Models. Du J; Tang L; Xiang Y; Zhi D; Xu J; Song HY; Tao C J Med Internet Res; 2018 Jul; 20(7):e236. PubMed ID: 29986843 [TBL] [Abstract][Full Text] [Related]
17. Extraction of Explicit and Implicit Cause-Effect Relationships in Patient-Reported Diabetes-Related Tweets From 2017 to 2021: Deep Learning Approach. Ahne A; Khetan V; Tannier X; Rizvi MIH; Czernichow T; Orchard F; Bour C; Fano A; Fagherazzi G JMIR Med Inform; 2022 Jul; 10(7):e37201. PubMed ID: 35852829 [TBL] [Abstract][Full Text] [Related]
18. Change in Threads on Twitter Regarding Influenza, Vaccines, and Vaccination During the COVID-19 Pandemic: Artificial Intelligence-Based Infodemiology Study. Benis A; Chatsubi A; Levner E; Ashkenazi S JMIR Infodemiology; 2021; 1(1):e31983. PubMed ID: 34693212 [TBL] [Abstract][Full Text] [Related]
19. "When 'Bad' is 'Good'": Identifying Personal Communication and Sentiment in Drug-Related Tweets. Daniulaityte R; Chen L; Lamy FR; Carlson RG; Thirunarayan K; Sheth A JMIR Public Health Surveill; 2016 Oct; 2(2):e162. PubMed ID: 27777215 [TBL] [Abstract][Full Text] [Related]
20. ReportAGE: Automatically extracting the exact age of Twitter users based on self-reports in tweets. Klein AZ; Magge A; Gonzalez-Hernandez G PLoS One; 2022; 17(1):e0262087. PubMed ID: 35077484 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]