These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Building a Toolbox for the Analysis and Prediction of Ligand and Catalyst Effects in Organometallic Catalysis. Durand DJ; Fey N Acc Chem Res; 2021 Feb; 54(4):837-848. PubMed ID: 33533587 [TBL] [Abstract][Full Text] [Related]
6. Electronic and Steric Tuning of a Prototypical Piano Stool Complex: Rh(III) Catalysis for C-H Functionalization. Piou T; Rovis T Acc Chem Res; 2018 Jan; 51(1):170-180. PubMed ID: 29272106 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of Rhodium-Catalyzed C-H Functionalization: Advances in Theoretical Investigation. Qi X; Li Y; Bai R; Lan Y Acc Chem Res; 2017 Nov; 50(11):2799-2808. PubMed ID: 29112396 [TBL] [Abstract][Full Text] [Related]
8. Multi-Instance Learning Approach to the Modeling of Enantioselectivity of Conformationally Flexible Organic Catalysts. Zankov D; Madzhidov T; Polishchuk P; Sidorov P; Varnek A J Chem Inf Model; 2023 Nov; 63(21):6629-6641. PubMed ID: 37902548 [TBL] [Abstract][Full Text] [Related]
9. Chiral-at-Ruthenium Catalysts for Nitrene-Mediated Asymmetric C-H Functionalizations. Ye CX; Meggers E Acc Chem Res; 2023 May; 56(9):1128-1141. PubMed ID: 37071874 [TBL] [Abstract][Full Text] [Related]
11. Catalytic Control in Cyclizations: From Computational Mechanistic Understanding to Selectivity Prediction. Peng Q; Paton RS Acc Chem Res; 2016 May; 49(5):1042-51. PubMed ID: 27137131 [TBL] [Abstract][Full Text] [Related]
12. Experimental-Computational Synergy for Selective Pd(II)-Catalyzed C-H Activation of Aryl and Alkyl Groups. Yang YF; Hong X; Yu JQ; Houk KN Acc Chem Res; 2017 Nov; 50(11):2853-2860. PubMed ID: 29115826 [TBL] [Abstract][Full Text] [Related]
13. Correlating Reactivity and Selectivity to Cyclopentadienyl Ligand Properties in Rh(III)-Catalyzed C-H Activation Reactions: An Experimental and Computational Study. Piou T; Romanov-Michailidis F; Romanova-Michaelides M; Jackson KE; Semakul N; Taggart TD; Newell BS; Rithner CD; Paton RS; Rovis T J Am Chem Soc; 2017 Jan; 139(3):1296-1310. PubMed ID: 28060499 [TBL] [Abstract][Full Text] [Related]
14. NiH-Catalyzed Functionalization of Remote and Proximal Olefins: New Reactions and Innovative Strategies. Wang Y; He Y; Zhu S Acc Chem Res; 2022 Dec; 55(23):3519-3536. PubMed ID: 36350093 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of Planar Chiral Ferrocenes via Transition-Metal-Catalyzed Direct C-H Bond Functionalization. Gao DW; Gu Q; Zheng C; You SL Acc Chem Res; 2017 Feb; 50(2):351-365. PubMed ID: 28121428 [TBL] [Abstract][Full Text] [Related]
17. Probing machine learning models based on high throughput experimentation data for the discovery of asymmetric hydrogenation catalysts. Kalikadien AV; Valsecchi C; van Putten R; Maes T; Muuronen M; Dyubankova N; Lefort L; Pidko EA Chem Sci; 2024 Aug; 15(34):13618-13630. PubMed ID: 39211503 [TBL] [Abstract][Full Text] [Related]
18. Computation and Experiment: A Powerful Combination to Understand and Predict Reactivities. Sperger T; Sanhueza IA; Schoenebeck F Acc Chem Res; 2016 Jun; 49(6):1311-9. PubMed ID: 27171796 [TBL] [Abstract][Full Text] [Related]
19. Overcoming the Pitfalls of Computing Reaction Selectivity from Ensembles of Transition States. Laplaza R; Wodrich MD; Corminboeuf C J Phys Chem Lett; 2024 Jul; 15(29):7363-7370. PubMed ID: 38990895 [TBL] [Abstract][Full Text] [Related]
20. Mechanistically driven development of iridium catalysts for asymmetric allylic substitution. Hartwig JF; Stanley LM Acc Chem Res; 2010 Dec; 43(12):1461-75. PubMed ID: 20873839 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]