These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35774181)

  • 1. Chemical control of spin-lattice relaxation to discover a room temperature molecular qubit.
    Amdur MJ; Mullin KR; Waters MJ; Puggioni D; Wojnar MK; Gu M; Sun L; Oyala PH; Rondinelli JM; Freedman DE
    Chem Sci; 2022 Jun; 13(23):7034-7045. PubMed ID: 35774181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-ligand covalency enables room temperature molecular qubit candidates.
    Fataftah MS; Krzyaniak MD; Vlaisavljevich B; Wasielewski MR; Zadrozny JM; Freedman DE
    Chem Sci; 2019 Jul; 10(27):6707-6714. PubMed ID: 31367325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling Up Electronic Spin Qubits into a Three-Dimensional Metal-Organic Framework.
    Yamabayashi T; Atzori M; Tesi L; Cosquer G; Santanni F; Boulon ME; Morra E; Benci S; Torre R; Chiesa M; Sorace L; Sessoli R; Yamashita M
    J Am Chem Soc; 2018 Sep; 140(38):12090-12101. PubMed ID: 30145887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dynamic ligand field of a molecular qubit: decoherence through spin-phonon coupling.
    Mirzoyan R; Hadt RG
    Phys Chem Chem Phys; 2020 May; 22(20):11249-11265. PubMed ID: 32211668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding Sites, Vibrations and Spin-Lattice Relaxation Times in Europium(II)-Based Metallofullerene Spin Qubits.
    Hu Z; Ullah A; Prima-Garcia H; Chin SH; Wang Y; Aragó J; Shi Z; Gaita-Ariño A; Coronado E
    Chemistry; 2021 Sep; 27(52):13242-13248. PubMed ID: 34268813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-Principles Investigation of Spin-Phonon Coupling in Vanadium-Based Molecular Spin Quantum Bits.
    Albino A; Benci S; Tesi L; Atzori M; Torre R; Sanvito S; Sessoli R; Lunghi A
    Inorg Chem; 2019 Aug; 58(15):10260-10268. PubMed ID: 31343163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic Spin Qubit Candidates Arrayed within Layered Two-Dimensional Polymers.
    Oanta AK; Collins KA; Evans AM; Pratik SM; Hall LA; Strauss MJ; Marder SR; D'Alessandro DM; Rajh T; Freedman DE; Li H; Brédas JL; Sun L; Dichtel WR
    J Am Chem Soc; 2023 Jan; 145(1):689-696. PubMed ID: 36574726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Qubit Control Limited by Spin-Lattice Relaxation in a Nuclear Spin-Free Iron(III) Complex.
    Zadrozny JM; Freedman DE
    Inorg Chem; 2015 Dec; 54(24):12027-31. PubMed ID: 26650962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Impact of Ligand Field Symmetry on Molecular Qubit Coherence.
    Kazmierczak NP; Mirzoyan R; Hadt RG
    J Am Chem Soc; 2021 Oct; 143(42):17305-17315. PubMed ID: 34615349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deconvolving Contributions to Decoherence in Molecular Electron Spin Qubits: A Dynamic Ligand Field Approach.
    Mirzoyan R; Kazmierczak NP; Hadt RG
    Chemistry; 2021 Jul; 27(37):9482-9494. PubMed ID: 33855760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K.
    Fielding AJ; Fox S; Millhauser GL; Chattopadhyay M; Kroneck PM; Fritz G; Eaton GR; Eaton SS
    J Magn Reson; 2006 Mar; 179(1):92-104. PubMed ID: 16343958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum.
    Ariciu AM; Woen DH; Huh DN; Nodaraki LE; Kostopoulos AK; Goodwin CAP; Chilton NF; McInnes EJL; Winpenny REP; Evans WJ; Tuna F
    Nat Commun; 2019 Jul; 10(1):3330. PubMed ID: 31350411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A concentrated array of copper porphyrin candidate qubits.
    Yu CJ; Krzyaniak MD; Fataftah MS; Wasielewski MR; Freedman DE
    Chem Sci; 2019 Feb; 10(6):1702-1708. PubMed ID: 30842834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Room temperature quantum coherence in a potential molecular qubit.
    Bader K; Dengler D; Lenz S; Endeward B; Jiang SD; Neugebauer P; van Slageren J
    Nat Commun; 2014 Oct; 5():5304. PubMed ID: 25328006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum coherence in a processable vanadyl complex: new tools for the search of molecular spin qubits.
    Tesi L; Lucaccini E; Cimatti I; Perfetti M; Mannini M; Atzori M; Morra E; Chiesa M; Caneschi A; Sorace L; Sessoli R
    Chem Sci; 2016 Mar; 7(3):2074-2083. PubMed ID: 29899933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Operation of a silicon quantum processor unit cell above one kelvin.
    Yang CH; Leon RCC; Hwang JCC; Saraiva A; Tanttu T; Huang W; Camirand Lemyre J; Chan KW; Tan KY; Hudson FE; Itoh KM; Morello A; Pioro-Ladrière M; Laucht A; Dzurak AS
    Nature; 2020 Apr; 580(7803):350-354. PubMed ID: 32296190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The critical role of ultra-low-energy vibrations in the relaxation dynamics of molecular qubits.
    Garlatti E; Albino A; Chicco S; Nguyen VHA; Santanni F; Paolasini L; Mazzoli C; Caciuffo R; Totti F; Santini P; Sessoli R; Lunghi A; Carretta S
    Nat Commun; 2023 Mar; 14(1):1653. PubMed ID: 36964152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits.
    Yu CJ; Graham MJ; Zadrozny JM; Niklas J; Krzyaniak MD; Wasielewski MR; Poluektov OG; Freedman DE
    J Am Chem Soc; 2016 Nov; 138(44):14678-14685. PubMed ID: 27797487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling the coherence of a diamond spin qubit through its strain environment.
    Sohn YI; Meesala S; Pingault B; Atikian HA; Holzgrafe J; Gündoğan M; Stavrakas C; Stanley MJ; Sipahigil A; Choi J; Zhang M; Pacheco JL; Abraham J; Bielejec E; Lukin MD; Atatüre M; Lončar M
    Nat Commun; 2018 May; 9(1):2012. PubMed ID: 29789553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spin Relaxation Benchmarks and Individual Qubit Addressability for Holes in Quantum Dots.
    Lawrie WIL; Hendrickx NW; van Riggelen F; Russ M; Petit L; Sammak A; Scappucci G; Veldhorst M
    Nano Lett; 2020 Oct; 20(10):7237-7242. PubMed ID: 32833455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.