BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35774825)

  • 1. Gamma Rays and Sodium Azide Induced Genetic Variability in High-Yielding and Biofortified Mutant Lines in Cowpea [
    Raina A; Laskar RA; Wani MR; Jan BL; Ali S; Khan S
    Front Plant Sci; 2022; 13():911049. PubMed ID: 35774825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field assessment of yield and its contributing traits in cowpea treated with lower, intermediate, and higher doses of gamma rays and sodium azide.
    Raina A; Khan S
    Front Plant Sci; 2023; 14():1188077. PubMed ID: 37521916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Induced High Yielding Cowpea Mutant Lines Using Physiological, Biochemical and Molecular Markers.
    Raina A; Laskar RA; Tantray YR; Khursheed S; Wani MR; Khan S
    Sci Rep; 2020 Feb; 10(1):3687. PubMed ID: 32111942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-parent advanced generation inter-cross (MAGIC) population for genetic analysis and improvement of cowpea (Vigna unguiculata L. Walp.).
    Huynh BL; Ehlers JD; Huang BE; Muñoz-Amatriaín M; Lonardi S; Santos JRP; Ndeve A; Batieno BJ; Boukar O; Cisse N; Drabo I; Fatokun C; Kusi F; Agyare RY; Guo YN; Herniter I; Lo S; Wanamaker SI; Xu S; Close TJ; Roberts PA
    Plant J; 2018 Mar; 93(6):1129-1142. PubMed ID: 29356213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimates of genotypic and phenotypic variance, heritability, and genetic advance of horticultural traits in developed crosses of cowpea (
    Zaki HEM; Radwan KSA
    Front Plant Sci; 2022; 13():987985. PubMed ID: 36237497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection of Novel Cowpea Genotypes Derived through Gamma Irradiation.
    Horn LN; Ghebrehiwot HM; Shimelis HA
    Front Plant Sci; 2016; 7():262. PubMed ID: 27148275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical mutagenesis: role in breeding and biofortification of lentil (Lens culinaris Medik) mutant lines.
    Raina A; Wani MR; Laskar RA; Khan S
    Mol Biol Rep; 2022 Dec; 49(12):11313-11325. PubMed ID: 35902448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diallel Analysis and Heritability of Grain Yield, Yield Components, and Maturity Traits in Cowpea (
    Owusu EY; Mohammed H; Manigben KA; Adjebeng-Danquah J; Kusi F; Karikari B; Sie EK
    ScientificWorldJournal; 2020; 2020():9390287. PubMed ID: 32802007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Mutagenic Effectiveness and Efficiency of Gamma Rays and Sodium Azide in Inducing Chlorophyll and Morphological Mutants of Cowpea.
    Raina A; Laskar RA; Wani MR; Jan BL; Ali S; Khan S
    Plants (Basel); 2022 May; 11(10):. PubMed ID: 35631747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] germplasm collections using phenotypic traits and SNP markers.
    Nkhoma N; Shimelis H; Laing MD; Shayanowako A; Mathew I
    BMC Genet; 2020 Sep; 21(1):110. PubMed ID: 32948123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induced variations of ethyl methane sulfonate mutagenized cowpea (
    Opoku Gyamfi M; Eleblu JSY; Sarfoa LG; Asante IK; Opoku-Agyemang F; Danquah EY
    Front Plant Sci; 2022; 13():952247. PubMed ID: 36003816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of terminal flowering cowpea (Vigna unguiculata (L.) Walp.) mutants obtained by induced mutagenesis digs out the loss-of-function of phosphatidylethanolamine-binding protein.
    Eswaramoorthy V; Kandasamy T; Thiyagarajan K; Chockalingam V; Jegadeesan S; Natesan S; Adhimoolam K; Prabhakaran J; Singh R; Muthurajan R
    PLoS One; 2023; 18(12):e0295509. PubMed ID: 38096151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introgression Breeding in Cowpea [
    Boukar O; Abberton M; Oyatomi O; Togola A; Tripathi L; Fatokun C
    Front Plant Sci; 2020; 11():567425. PubMed ID: 33072144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring Niches for Short-Season Grain Legumes in Semi-Arid Eastern Kenya - Coping with the Impacts of Climate Variability.
    Sennhenn A; Njarui DMG; Maass BL; Whitbread AM
    Front Plant Sci; 2017; 8():699. PubMed ID: 28536585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic variability, heritability and correlation analysis among maturity and yield traits in Cowpea (
    Owusu EY; Karikari B; Kusi F; Haruna M; Amoah RA; Attamah P; Adazebra G; Sie EK; Issahaku M
    Heliyon; 2021 Sep; 7(9):e07890. PubMed ID: 34522801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembled genomic and tissue-specific transcriptomic data resources for two genetically distinct lines of Cowpea (
    Spriggs A; Henderson ST; Hand ML; Johnson SD; Taylor JM; Koltunow A
    Gates Open Res; 2018; 2():7. PubMed ID: 29528046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing Resource Allocation in a Cowpea (
    Omirou M; Ioannides IM; Fasoula DA
    Front Plant Sci; 2019; 10():949. PubMed ID: 31440264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gamma irradiation to induce beneficial mutants in proso millet (
    Francis N; Rajasekaran R; Krishnamoorthy I; Muthurajan R; Thiyagarajan C; Alagarswamy S
    Int J Radiat Biol; 2022; 98(7):1277-1288. PubMed ID: 34982661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of
    Yasmin K; Arulbalachandran D; Dilipan E; Vanmathi S
    Int J Radiat Biol; 2020 Jul; 96(7):929-936. PubMed ID: 32238097
    [No Abstract]   [Full Text] [Related]  

  • 20. Phenotypic diversity in mutagenized population of urdbean (
    Goyal S; Wani MR; Raina A; Laskar RA; Khan S
    Heliyon; 2021 May; 7(5):e06356. PubMed ID: 34136668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.